Advertisement

Turbulence Experiments in Superfluid 3He at Very Low Temperatures

  • Shaun N. Fisher
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 501)

Abstract

Over the past few years, the experimental study of superfluid turbulence has made very significant advances following the discovery of turbulence in the B-phase of superfluid 3He. Experiments in superfluid 3He are far more cryogenically challenging than in 4He since the temperatures required are of order a thousand times lower. However, 3He has some advantages. The main advantages come from the ease of vortex detection at low temperatures. In particular, vortices in 3He have a large cross-section for Andreev Scattering quasiparticle excitations. This property along with ultra sensitive quasiparticle detection techniques, allows superfluid turbulence experiments even in the very low temperature limit. In this chapter, we first give a brief background to the cryogenic techniques used and the basic physics underlying superfluid 3He. We then describe in more detail vibrating wire techniques which are used for all the turbulence experiments in the low temperature limit. Finally we discuss the low temperature superfluid 3He experiments which have been made to date and compare the findings with observations in superfluid 4He and with the ideas of classical turbulence.

Keywords

Fluid Dynamics Detection Technique Significant Advance Basic Physic Spin Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    D.I. Bradley, T. W. Bradshaw, A.M. Guénault, V. Keith, B.G. Locke-Scobie, I.E. Miller, G.R. Pickett, and W.P. Pratt, Jr., Cryogenics 6, 296 (1982).CrossRefGoogle Scholar
  2. [2]
    D.I. Bradley, A.M. Guénaul, V. Keith, C.J. Kennedy, I.E. Miller, S.G. Mussett, G.R. Pickett, and W.P. Pratt, Jr., J. Low Temp. Phys. 57, 359 (1984).CrossRefGoogle Scholar
  3. [3]
    D.J. Cousins, S. N. Fisher, A.M. Guénaul, R.P. Haley, I.E. Miller, G.R. Pickett, G.N. Plenderleith, P. Skyba, P.Y.A. Thibault, and M.B. Ward, J. Low Temp. Phys. 114, 547 (1999).CrossRefGoogle Scholar
  4. [4]
    D.D. Osheroff, R.C. Richardson, and D.M. Lee, Phys. Rev. Lett. 29, 920 (1972).CrossRefGoogle Scholar
  5. [5]
    J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    L.D. Landau, Sov. Phys. JETP 3, 920 (1957).zbMATHGoogle Scholar
  7. [7]
    A.J. Leggett, Reviews of Modern Physics 47, 331 (1975).CrossRefGoogle Scholar
  8. [8]
    D. Vollhardt, and P. Wölfle, The Superfluid Phases of Helium 3 (Taylor & Francis, 1990).Google Scholar
  9. [9]
    D.S. Greywall, Phys. Rev. B 33, 7520 (1985).CrossRefGoogle Scholar
  10. [10]
    R. Balian, N.R. Werthamer, Phys. Rev. 131, 1553 (1963).CrossRefGoogle Scholar
  11. [11]
    A.J. Leggett, Phys. Rev. Lett. 31, 352 (1973).CrossRefGoogle Scholar
  12. [12]
    P.W. Anderson and P. Morel, Phys. Rev. 123 1911 (1961).CrossRefMathSciNetGoogle Scholar
  13. [13]
    A.M. Guénault, V. Keith, C.J. Kennedy, S.G. Mussett, and G.R. Pickett, J. Low Temp. Phys. 62, 511 (1986).CrossRefGoogle Scholar
  14. [14]
    D.C. Carless, H.E. Hall, and J.R. Hook, J. Low Temp. Phys. 50, 583 (1982).CrossRefGoogle Scholar
  15. [15]
    G.G. Stokes, Mathematical and Physical Papers (Cambridge University Press, London, 1901), vol. 3, p.38.zbMATHGoogle Scholar
  16. [16]
    D.C. Carless, H.E. Hall, and J.R. Hook, J. Low Temp. Phys. 50, 605 (1982).CrossRefGoogle Scholar
  17. [17]
    A.M. Guénault, V. Keith, C.J. Kennedy, I.E. Miller, and G.R. Pickett, Nature 302, 695 (1983).CrossRefGoogle Scholar
  18. [18]
    A.M. Guénault, V. Keith, C.J. Kennedy, and G.R. Pickett, Quantum Fluids and Solids (AIP Conference Proceedings) 103, 273 (1983)Google Scholar
  19. [19]
    A.M. Guénault, V. Keith, C.J. Kennedy, and G.R. Pickett, Phys. Rev. Lett. 50, 522 (1983).CrossRefGoogle Scholar
  20. [20]
    J.P. Carney, A.M. Guénault, G.R. Pickett, and G.F. Spencer, Phys. Rev. Lett. 62, 3042 (1989).CrossRefGoogle Scholar
  21. [21]
    S.N. Fisher, A.M. Guénault, C.J. Kennedy, and G.R. Pickett, Phys. Rev. Lett. 63, 2566 (1989).CrossRefGoogle Scholar
  22. [22]
    S.N. Fisher, A.M. Guénault, C.J. Kennedy, and G.R. Pickett, Physica B 165–166, 651 (1989).Google Scholar
  23. [23]
    S.N. Fisher, G.R. Pickett, and R.J. Watts-Tobin, J. Low Temp. Phys. 83, 225 (1991).CrossRefGoogle Scholar
  24. [24]
    R.J. Watts-Tobin and S.N. Fisher, Physica B 165–166, 683 (1990).CrossRefGoogle Scholar
  25. [25]
    S.N. Fisher, A.M. Guénault, C.J. Kennedy, and G.R. Pickett, Phys. Rev. Lett. 69, 1073 (1992).CrossRefGoogle Scholar
  26. [26]
    C. Bäuerle, Y.M. Bunkov, S.N. Fisher, and H. Godfrin, Phys. Rev. B. 57, 14381 (1997).CrossRefGoogle Scholar
  27. [27]
    M.P. Enrico, S.N. Fisher, and R.J. Watts-Tobin, J. Low Temp. Phys. 98, 81 (1995).CrossRefGoogle Scholar
  28. [28]
    A.I. Ahohen, J. Kokko, M.A. Paalanen, R.C. Richardson, W. Schoepe, and Y. Takano, J. Low Temp. Phys. 30, 205 (1978).CrossRefGoogle Scholar
  29. [29]
    W. Zhang, J. Kurkijarvi, and E.V. Thuneburg, Phys. Rev. B 36, 1987 (1987).CrossRefGoogle Scholar
  30. [30]
    C.J. Lambert, Physica B 165–166, 653 (1990).Google Scholar
  31. [31]
    S.N. Fisher, A.J. Hale, A.M. Guénault, and G.R. Pickett, Phys. Rev. Lett. 86, 244 (2001).CrossRefGoogle Scholar
  32. [32]
    J.C. Wheatley, Reviews of Modern Physics 47, 415 (1975).CrossRefGoogle Scholar
  33. [33]
    C. Bäuerle, Y.M. Bunkov, S.N. Fisher, and H. Godfrin, Phys. Rev. B. 57, 14381 (1997).CrossRefGoogle Scholar
  34. [34]
    M.P. Enrico, S.N. Fisher, A.M. Guénault, G.R. Pickett, and K. Torizuka, Phys. Rev. Lett. 70, 1846 (1993).CrossRefGoogle Scholar
  35. [35]
    D.J. Cousins, M.P. Enrico, S.N. Fisher, S.L. Phillipson, G.R. Pickett, N.S. Shaw, and P.J.Y. Thibault, Phys. Rev. Lett. 77, 5245 (1996).CrossRefGoogle Scholar
  36. [36]
    M. Bartkowiak, S.W.J. Daley, S.N. Fisher, A.M. Guénault, G.N. Plenderleith, R.P. Haley, G.R. Pickett, and P. Skyba, Phys. Rev. Lett. 83, 3462 (1999).CrossRefGoogle Scholar
  37. [37]
    M. Bartkowiak, S.N. Fisher, A.M. Guénault, R.P. Haley, G.R. Pickett, G.N. Plenderleith, and P. Skyba, Phys. Rev. Lett. 85, 4321 (2000).CrossRefGoogle Scholar
  38. [38]
    D.I. Bradley, Yu.M. Bunkov, D.J. Cousins, M.P. Enrino, S.N. Fisher, M.R. Follows, A.M. Guénault, W.M. Hayes, G.R. Pickett, and T. Sloan, Phys. Rev. Lett. 75, 1887 (1995).CrossRefGoogle Scholar
  39. [39]
    C. Bäuerle, Y.M. Bunkov, S.N. Fisher, H. Godfrin, and G.R. Pickett, Nature 382, 332 (1996).CrossRefGoogle Scholar
  40. [40]
    D.I. Bradley, S.N. Fisher, A.M. Guénault, M.R. Lowe, G.R. Pickett, A. Rahm, and R.C.V. Whitehead, Phys. Rev. Lett. 93, 235302 (2004).CrossRefGoogle Scholar
  41. [41]
    S.R. Stalp, L. Skrbek, and R.J. Donnelly, Phys. Rev. Lett. 82, 4831 (1999).CrossRefGoogle Scholar
  42. [42]
    L. Skrbek, J.J. Niemela, and R.J. Donnelly, Phys. Rev. Lett. 85, 2973 (2000).CrossRefGoogle Scholar
  43. [43]
    L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press London, 1966).Google Scholar
  44. [44]
    D.I. Bradley, Phys. Rev. Lett. 84 1252 (2000).CrossRefGoogle Scholar
  45. [45]
    R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991).Google Scholar
  46. [46]
    D.I. Bradley, D.O. Clubb, N.N. Fisher, A.M. Guénault, R.P. Haley, C.J. Matthews, G.R. Pickett, V. Tsepelin, and K. Zaki Phys. Rev. Lett. 95, 305302 (2005).CrossRefGoogle Scholar
  47. [47]
    R. Hänninen, A. Mitani, and M. Tsubota, AIP Conference Proceedings 850, 217 (2006).CrossRefGoogle Scholar
  48. [48]
    A. Mitani et al., to be published.Google Scholar
  49. [49]
    D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, R.P. Haley, C.J. Matthews, G.R. Pickett, V. Tsepelin, and K. Zaki, Phys. Rev. Lett. 96, 035301 (2006).CrossRefGoogle Scholar
  50. [50]
    D.C. Carless, H.E. Hall, and J.R. Hook, J. Low Temp. Phys. 50, 605 (1983).CrossRefGoogle Scholar
  51. [51]
    T. Araki, M. Tsubota, and S.K. Nemirovskii, Phys. Rev. Lett. 89, 145301 (2002).CrossRefGoogle Scholar
  52. [52]
    W.F. Vinen and J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002).CrossRefGoogle Scholar
  53. [53]
    A.P. Finne, T. Araki, R. Blaauwgeers, V.B. Eltsov, N.B. Kopnin, M. Krusius, L. Skrbek, M. Tsubota, and G.E. Volovik, Nature 424, 1022 (2003).CrossRefGoogle Scholar
  54. [54]
    G.E. Volovik, J. Low Temp. Phys. 136, 309 (2004).CrossRefGoogle Scholar
  55. [55]
    D.I. Bradley, S.N. Fisher, A.M. Guénault, M.R. Lowe, G.R. Pickett, and A. Rahm, Physica B 329, 104 (2003).CrossRefGoogle Scholar
  56. [56]
    D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, C.J. Matthews, and G.R. Pickett, J. Low Temp. Phys. 134, 381 (2004).CrossRefGoogle Scholar
  57. [57]
    T.D.C. Bevan et al., J. Low Temp. Phys. 109, 423 (1997).Google Scholar

Copyright information

© CISM, Udine 2008

Authors and Affiliations

  • Shaun N. Fisher
    • 1
  1. 1.Department of PhysicsLancaster UniversityLancasterUK

Personalised recommendations