Advertisement

Bose-Einstein condensation and superfluid turbulence

  • Natalia G. Berloff
Chapter
  • 611 Downloads
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 501)

Abstract

We consider superfluid motion that arises from Bose condensation and restricted by quantum conditions. Superfluids have been studied experimentally for many years and have by now become a major focus of cryogenic physics. Applications of the subject are wide-ranging, from engineering to astrophysics. Superfluid turbulence provides insights into classical fluid turbulence, especially at high Reynolds numbers, where the vorticity has an intermittent, fractal character. In this Chapter we consider different modifications of the nonlinear Schrödinger equation to elucidate various aspects of superfluid behaviour: motion of vortices, travelling waves, interactions with normal fluid and superfluid turbulence.

Keywords

Reynolds Number Fluid Dynamics Quantum Condition High Reynolds Number Major Focus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    L. Landau, J. Phys. USSR 5, 71 (1941).Google Scholar
  2. [2]
    C.F. Barenghi, D.C. Samuels, G.H. Bauer, and R.J. Donnelly, Phys. Fluids 9, 2631 (1997).CrossRefGoogle Scholar
  3. [3]
    C.F. Barenghi, C.J. Swanson, and R.J. Donnelly, J. Low. Temp. Phys. 100, 385 (1995).CrossRefGoogle Scholar
  4. [4]
    R.J. Donnelly, Quantized Vortices in Helium II. Cambridge University Press, 1991.Google Scholar
  5. [5]
    H.E. Hall and W.F. Vinen, Proc. R. Soc. Lond. A. 238, 215 (1956).zbMATHCrossRefGoogle Scholar
  6. [6]
    I.L. Bekharevich and I.M. Khalatnikov, Sov. Phys., JETP, 13, 643 (1961).Google Scholar
  7. [7]
    R.N. Hills and P.H. Roberts, Archiv. Rat. Mech. & Anal. 66, 43 (1977). Int. J. Eng. Sci. 15, 305 (1977); J. Low Temp. Phys. 30, 709 (1978); J. Phys. C 11, 4485 (1978).zbMATHMathSciNetGoogle Scholar
  8. [8]
    C.F. Barenghi and C.A. Jones, Phys. Lett. A 122, 425 (1987); J. Fluid Mech. 197, 551 (1988).CrossRefGoogle Scholar
  9. [9]
    C.E. Swanson and R.J. Donnelly J. Low Temp. Phys. 67, 185 (1987).CrossRefGoogle Scholar
  10. [10]
    P.G. Saffman, Vortex Dynamics, Cambridge University Press, 1992.Google Scholar
  11. [11]
    M. Leadbeater M., T. Winiecki, D.C. Samuels, C.F. Barenghi, and C.S. Adams, Phys. Rev. Letts, 86, 1410 (2001); N.G. Berloff, Phys. Rev. A 69, 053601 (2004).CrossRefGoogle Scholar
  12. [12]
    V.L. Ginzburg and L.P. Pitaevskii, Zh. Eksp. Teor. Fiz. 34, 1240 (1958); Sov. Phys. JETP 7, 858 (1958)]; E.P. Gross, Nuovo Cimento 20, 454 (1961); L.P. Pitaevskii, Soviet Physics JETP, 13, 451 (1961).MathSciNetGoogle Scholar
  13. [13]
    L.P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).MathSciNetGoogle Scholar
  14. [14]
    N.G. Berloff, J. Phys. A: Math. Gen. 37, 1617 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    A.L. Fetter, in Lectures in Theoretical Physics, ed. by K.T. Mahanthappa and W.E. Brittin (Gordon and Breach, New York, 1969), Vol. XIB, p.351.Google Scholar
  16. [16]
    P.H. Roberts, Proc. R. Soc. Lond. A 459, 597 (2003).zbMATHCrossRefGoogle Scholar
  17. [17]
    P. Mason, N.G. Berloff, and A.L. Fetter, Phys. Rev. A 74, 043611 (2006).CrossRefGoogle Scholar
  18. [18]
    C.A. Jones and P.H. Roberts, J. Phys. A: Gen. Phys. 15, 2599 (1982).CrossRefGoogle Scholar
  19. [19]
    B.Y. Rubinstein and L.M. Pismen, Physica D 78, 1 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Y.S. Kivshar, J. Christou, V. Tikhonenko, B. Luther-Davies, and L.M. Pismen, Optics Comm. 152, 198 (1998).CrossRefGoogle Scholar
  21. [21]
    L.M. Pismen, Vortices in Nonlinear Fields. Clarendon Press, Oxford, 1999.zbMATHGoogle Scholar
  22. [22]
    J.R. Anglin, Phys. Rev. A 65, 063611 (2002).CrossRefGoogle Scholar
  23. [23]
    E. Lundh, C.J. Pethick, and H. Smith, Phys. Rev. A 55, 2126 (1997).CrossRefGoogle Scholar
  24. [24]
    D.S. Naik, S.R. Muniz, and C. Raman, Phys. Rev. A 72, 051606(R) (2005).CrossRefGoogle Scholar
  25. [25]
    P. Mason and N.G. Berloff, submitted, Phys. Rev. A (2007).Google Scholar
  26. [26]
    J.B. Brooks and R.J. Donnelly, J. Phys. Chem. Ref. Data 6, 51 (1977).CrossRefGoogle Scholar
  27. [27]
    Y. Pomeau and S. Rica Phys. Rev. Lett. 71, 247 (1993).CrossRefGoogle Scholar
  28. [28]
    N.G. Berloff, J. Low Temp. Phys. 116, 359 (1999).CrossRefGoogle Scholar
  29. [29]
    N.G. Berloff and P.H. Roberts, J. Phys. A. 32, 5611 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari, and J. Treiner, Phys. Rev. B 52, 1193 (1995).CrossRefGoogle Scholar
  31. [31]
    M. Sadd, G.V. Chester, and L. Reatto, Phys. Rev. Lett. 79, 2490 (1997).CrossRefGoogle Scholar
  32. [32]
    N.G. Berloff and P.H. Roberts, Phys. Lett. A 274, 69 (2000).CrossRefGoogle Scholar
  33. [33]
    F. Ancilotto, F. Dalfovo, L.P. Pitaevskii, and F. Toigo, Phys. Rev. B. 71, 104530 (2005).CrossRefGoogle Scholar
  34. [34]
    T. Tsuzuki, J. Low Temp. Phys. 4 441 (1971).CrossRefGoogle Scholar
  35. [35]
    P.H. Roberts and J. Grant, J. Phys. A. Gen. Phys. 4, 55 (1971).CrossRefGoogle Scholar
  36. [36]
    N.G. Berloff and P.H. Roberts, J. Phys. A: Math. Gen. 37, 11333 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    C.J. Myatt et al., Phys. Rev. Lett. 78, 586 (1997); D.S. Hall et al., Phys. Rev. Lett. 81, 1539 (1998); D.M. Stamper-Kurn et al., Phys. Rev. Lett. 80, 2027 (1998); J. Stenger, et al., Nature 396, 345 (1998).CrossRefGoogle Scholar
  38. [38]
    G. Modugno et al., Phys. Rev. Lett. 89, 190404 (2002).CrossRefGoogle Scholar
  39. [39]
    C.J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, 2002.Google Scholar
  40. [40]
    P. Öhberg and L. Santos, Phys. Rev. Lett. 86, 2918 (2001); Th. Busch and J.R. Anglin, Phys. Rev. Lett. 87, 010401 (2001); P.G. Kevrekidis et al., Europhys. J. D 28, 181 (2004).CrossRefGoogle Scholar
  41. [41]
    S. Coen and M. Haelterman, Phys. Rev. Lett. 87, 140401 (2001).CrossRefGoogle Scholar
  42. [42]
    J. Ruostekoski and J.R. Anglin, Phys. Rev. Lett. 86, 3934 (2001); C.M. Savage and J. Ruostekoski, Phys. Rev. Lett. 91, 010403 (2003); R.A. Battye, N.R. Cooper, and P.M. Sutcliffe, Phys. Rev. Lett. 88, 080401 (2002).CrossRefGoogle Scholar
  43. [43]
    N.G. Berloff, Phys. Rev. Lett. 94, 120401 (2005).CrossRefGoogle Scholar
  44. [44]
    T. Frisch, Y. Pomeau, and S. Rica, Phys. Rev. Lett. 69, 1644 (1992).CrossRefGoogle Scholar
  45. [45]
    T. Winiecki, J.F. McCann, and C.S. Adams, Phys. Rev. Letts 82, 5186 (1999).CrossRefGoogle Scholar
  46. [46]
    N.G. Berloff, and P.H. Roberts, J. Phys.: Math. Gen. 33, 4025 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  47. [47]
    C. Josserand and Y. Pomeau, Nonlinearity 14, R25 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  48. [48]
    N.G. Berloff, Arxiv preprint cond-mat/0412743 (2004).Google Scholar
  49. [49]
    E.A. Kuznetsov and J.J. Rasmussen, Phys. Rev. E 51 4479 (1995).CrossRefGoogle Scholar
  50. [50]
    R.F. Carey, J.A. Rooney, and C.W. Smith, Phys. Letters A 65, 311 (1978); K.W. Schwarz and C.W. Smith, Physics Letters A 82, 251 (1981).CrossRefGoogle Scholar
  51. [51]
    R.D. Finch, R. Kagiwada, M. Barmatz, and I. Rudnick, Phys. Rev. A 134, 1425 (1964).CrossRefGoogle Scholar
  52. [52]
    N.G. Berloff and C.F. Barenghi, Phys. Rev. Letts. 93 090401 (2004).CrossRefGoogle Scholar
  53. [53]
    E. Levich and V. Yakhot, J. Phys. A: Math. Gen. 11, 2237 (1978).CrossRefGoogle Scholar
  54. [54]
    Yu. Kagan and B.V. Svistunov, Phys. Rev. Lett. 79, 3331 (1997).CrossRefGoogle Scholar
  55. [55]
    B.V. Svistunov, Phys. Rev. B 52, 3647 (1995).CrossRefGoogle Scholar
  56. [56]
    V.E. Zakharov, S.L. Musher, and A.M. Rubenchik, Phys. Rep. 129, 285 (1985); S. Dyachenko, A.C. Newell, A. Pushkarev, and V.E. Zakharov, Physica D 57, 96 (1992).CrossRefMathSciNetGoogle Scholar
  57. [57]
    N.G. Berloff and B.V. Svistunov, Phys. Rev. A 66, 013603 (2002).CrossRefGoogle Scholar
  58. [58]
    M.J. Davis, S.A. Morgan, and K. Burnett, Phys. Rev. Lett. 87, 160402 (2001); Phys. Rev. A 66, 053618 (2002).CrossRefGoogle Scholar
  59. [59]
    C. Connaughton et al., Phys. Rev. Lett. 95, 263901 (2005).CrossRefGoogle Scholar
  60. [60]
    C. Nore, M. Abid, and M. E. Brachet, Phys. Fluids 9, 2644 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  61. [61]
    M. Kobayashi and M. Tsubota, Phys. Rev. Lett. 94, 066302 (2005).CrossRefGoogle Scholar
  62. [62]
    M. Brewczyk et al., J. Phys. B: At. Mol. Opt. Phys. 40, R1 (2007) and reference therein.CrossRefGoogle Scholar
  63. [63]
    N.N. Bogoliubov, J. Physics 11, 23 (1947).Google Scholar
  64. [64]
    N.G. Berloff and A.J. Youd, Phys. Rev. Lett. 99, 145301 (2007).CrossRefGoogle Scholar
  65. [65]
    N.G. Berloff and C. Yin, J. Low Temp. Phys. 145, 187 (2006).CrossRefGoogle Scholar
  66. [66]
    T.W.B. Kibble, J. Phys. A 9, 1387 (1976); W. H. Zurek, Nature 317. 505 (1985).CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2008

Authors and Affiliations

  • Natalia G. Berloff
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations