Advertisement

Motion of Solid Particles and Flow Visualization in Helium II

  • Yuri A. Sergeev
Chapter
  • 620 Downloads
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 501)

Abstract

Recent experiments have shown that it is possible to implement Particle Image Velocimetry (PIV) in liquid helium. However, to interpret the PIV data in the superfluid phase, it is necessary to understand how the particles are affected by the two components, the viscous normal fluid and the inviscid superfluid, as well as by the quantized vortex lines that may exist in the superfluid component. The chapter is supplemented by exercises aiming to assist the reader in better understanding this rapidly developing area of research.

Keywords

Fluid Dynamics Particle Image Velocimetry Solid Particle Recent Experiment Particle Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. T. R. Auton, J. C. R. Hunt, and M. Prud’homme, J. Fluid Mech., 197:241, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  2. A. Babiano, J. H. E. Cartwright, O. Piro, and A. Provenzale, Phys. Rev. Lett. 84:5764, 2000.CrossRefGoogle Scholar
  3. C. F. Barenghi, D. Kivotides, and Y. A. Sergeev, J. Low Temp. Phys., 148:293, 2007.CrossRefGoogle Scholar
  4. G. K. Batchelor, An Introduction to Fluid Dynamics. Cambridge University Press, 1973.Google Scholar
  5. N. G. Berloff and P. H. Roberts, Phys. Rev. B, 63:024510, 2000.CrossRefGoogle Scholar
  6. G. P. Bewley, D. P. Lathrop, and K. R. Sreenivasan, Nature, 44:588, 2006.CrossRefGoogle Scholar
  7. G. P. Bewley, D. P. Lathrop, K. R. Sreenivasan, and M. S. Paoletti, 2007, in preparation.Google Scholar
  8. D. Celik and S. W. Van Sciver, Exp. Therm. Fluid Sci., 26:971, 2002CrossRefGoogle Scholar
  9. R.J. Donnelly, A. N. Karpetis, J. J. Niemela, K. R. Sreenivasan, and W. F. Vinen, J. Low Temp. Phys., 126:327, 2002.CrossRefGoogle Scholar
  10. R. P. Feynman. In C. J. Corter, editor. Progress in Low Temperature Physics, Vol. 1. North-Holland, Amsterdam, p. 17, 1955.CrossRefGoogle Scholar
  11. H. E. Hall and W. F. Vinen, Proc. R. Soc. London, Ser. A, 238:215, 1956.zbMATHCrossRefGoogle Scholar
  12. O. C. Idowu, D. Kivotides, C. F. Barenghi, and D. C. Samuels, J. Low Temp. Phys., 130:269, 2000a.CrossRefGoogle Scholar
  13. O. C. Idowu, A. Willis, C. F. Barenghi, and D. C. Samuels, Phys. Rev. B, 62:3409, 2000b.CrossRefGoogle Scholar
  14. J. Jäger, B. Schuderer, and W. Schoepe, Phys. Rev. Lett., 74:566, 1995.CrossRefGoogle Scholar
  15. I. Kim, S. Elghobashi, and W. A. Sirignano, J. Fluid Mech., 367:221, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  16. D. Kivotides, J. C. Vassilicos, D. C. Samuels, and C. F. Barenghi, Phys. Rev. Lett., 86:3080, 2001.CrossRefGoogle Scholar
  17. D. Kivotides, C. F. Barenghi, and Y. A. Sergeev, Phys. Rev. Lett., 95:215302, 2005.CrossRefGoogle Scholar
  18. D. Kivotides, C. F. Barenghi, and Y. A. Sergeev, Europhys. Lett., 73:733, 2006a.CrossRefGoogle Scholar
  19. D. Kivotides, C. F. Barenghi, and Y. A. Sergeev, J. Low Temp. Phys., 144:121, 2006b.CrossRefGoogle Scholar
  20. D. Kivotides, C. F. Barenghi, and Y. A. Sergeev, Phys. Rev. B, 75:212502, 2007.CrossRefGoogle Scholar
  21. D. Kivotides, C. F. Barenghi, and Y. A. Sergeev, Phys. Rev. B, 77:014527, 2008.CrossRefGoogle Scholar
  22. L. D. Landau and E. M. Lifshitz, Fluid Mechanics. Course of Theoretical Physics, Vol. 6. Butterworth-Heinemann, 1987.Google Scholar
  23. M. R. Maxey and J. J. Riley, Phys. Fluids, 26:883, 1983.zbMATHCrossRefGoogle Scholar
  24. R. Mei, J. Fluid Mech., 270:133, 1994.zbMATHCrossRefGoogle Scholar
  25. D. J. Melotte and C. F. Barenghi, Phys. Rev. Lett., 80:4181, 1998.CrossRefGoogle Scholar
  26. L. Onsager, Nuovo Cim. Suppl. 2, 6:249, 1949.MathSciNetGoogle Scholar
  27. D. R. Poole, C. F. Barenghi, Y. A. Sergeev, and W. F. Vinen, Phys. Rev. B, 71:064514, 2005.CrossRefGoogle Scholar
  28. M. Raffel, C. Willert, and J. Kompenhaus, Particle Image Velocimetry, a Practical Guide. Springer, Berlin, 1998.Google Scholar
  29. P.-E. Roche, P. Diribarne, T. Didelot, O. Francais, L. Rousseau, and H. Willaime, Europhys. Lett., 77:66002, 2007.CrossRefGoogle Scholar
  30. D. C. Samuels. In C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, editors. Quantized Vortex Dynamics and Superfluid Turbulence. Springer, Berlin, p. 97, 2001.CrossRefGoogle Scholar
  31. K. W. Schwarz, Phys. Rev. A, 10:2306, 1974.CrossRefGoogle Scholar
  32. K. W. Schwarz, Phys. Rev. B, 31, 5782, 1985.CrossRefGoogle Scholar
  33. K. W. Schwarz, Phys. Rev. B 38:2398, 1988.CrossRefGoogle Scholar
  34. Y. A. Sergeev, C. F. Barenghi, D. Kivotides, and W. F. Vinen, Phys. Rev. B, 73:052502, 2006a.CrossRefGoogle Scholar
  35. Y. A. Sergeev, C. F. Barenghi, and D. Kivotides, Phys. Rev. B, 74:184506, 2006b (for missing figure see Erratum in Phys. Rev. B, 75:019904(E), 2007).CrossRefGoogle Scholar
  36. Y. A. Sergeev, S. Wang, E. Meneguz, C. F. Barenghi, J. Low Temp. Phys., 146:417, 2007.CrossRefGoogle Scholar
  37. M. Tsubota and S. Maekawa, Phys. Rev. B, 47:12040, 1993.CrossRefGoogle Scholar
  38. T. Zhang and S. W. Van Sciver. In S. Breon, editor. Advances in Cryogenics Engineering, AIP Conf. Proc. No. 613. AIP, Melville, NY, p. 1372, 2002.Google Scholar
  39. T. Zhang, D. Celik, and S. W. Van Sciver, J. Low Temp. Phys., 134:985, 2004.CrossRefGoogle Scholar
  40. T. Zhang and S. W. Van Sciver, J. Low Temp. Phys., 138, 865, 2005a.CrossRefGoogle Scholar
  41. T. Zhang and S. W. Van Sciver, Nature Physics, 1:36, 2005b.CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2008

Authors and Affiliations

  • Yuri A. Sergeev
    • 1
  1. 1.School of Mechanical and Systems EngineeringNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations