Skip to main content

Real-Time Testing With Dynamic Substructuring

  • Chapter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 502))

Abstract

In this chapter the real-time testing technique which has become known as real-time dynamic substructuring is discussed. A control systems approach is taken to develop stability and robustness criteria for real-time dynamic substructuring tests. In particular we discuss how delay and uncertainty effects in the experimental apparatus can lead to loss of accuracy, or worse, system instability. Models which take account of the delay effects are developed using both delay differential equations and transfer functions. From these models delay compensation schemes can be constructed either using inverse transfer functions or forward prediction methods. Three methods for improving robustness are described for use in combination with a delay compensator. Throughout the chapter experimental results are presented, and in the final part results from an industrial example of substructuring a helicopter lag damper are discussed in detail.

David Wagg is supported by an EPSRC Advanced Research Fellowship. The authors would also like to acknowledge the work of Max Wallace and Alicia Gonzalez-Buelga, who produced many of the experimental results shown in this chapter. MW was supported for his PhD studies by an EPSRC DTA and AGB is supported by EPSRC grant (GR/S49780). Peter Gawthrop is a Visiting Research Fellow at the University of Bristol.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • A. K. Agrawal and J. N. Yang. Compensation of time-delay for control of civil engineering structures. Earthquake Engineering & Structural Dynamics, 29:37–62, 2000.

    Article  Google Scholar 

  • W. Algaard, A. Agar, and N. Bicanic. Enhanced integral form of the newmark time stepping scheme for pseudodynamic testing. Engineering Computations, 18(3–4):676–689, 2001.

    Article  MATH  Google Scholar 

  • M Bacic. Hardware-in-the-loop simulation: Taxonomic framework, survery and new research directions. University of Oxford Report No. 2290/06, 2006.

    Google Scholar 

  • V. Bayer, U. E. Dorka, U. Fullekrug, and J. Gschwilm. On real-time pseudo-dynamic sub-structure testing: algorithm, numerical and experimental results. Aerospace Science & Technology, 9(3):223–232, April 2005.

    Article  Google Scholar 

  • G. Benzoni. Challenges of new generation seismic testing facilities. Experimental Techniques, 25(2):20–23, 2001.

    Article  Google Scholar 

  • A. Blakeborough, M. S. Williams, A. P. Darby, and D. M. Williams. The development of real-time substructure testing. Philosopical Transactions of the Royal Society of London A, 359:1869–1891, 2001.

    Article  Google Scholar 

  • A. Bonelli and O.S. Bursi. Generalized-a methods for seismic structural testing. Earthquake Engineering and Structural Dynamics, 33(10):1067–1102, 2004.

    Article  Google Scholar 

  • P. A. Bonnet, C. N. Lim, M. S. Williams, A. Blakeborough, S. A. Neild, D. P. Stoten, and C. A. Taylor. Real-time hybrid experiments with new-mark integration, mscmd outer-loop control and multi-tasking strategies. Earthquake Engineering & Structural Dynamics, 36(1):119–141, January 2007.

    Article  Google Scholar 

  • T. Brendecke and F. Kucukay. Virtual real-time environment for automatic-transmission control units in the form of hardware-in-the-loop. Internationa Journal of Vehicle Design, 28(1–3):84–102, 2002.

    Article  Google Scholar 

  • O. S. Bursi, A. Gonzalez-Buelga, L. Vulcan, S. A. Neild, and D. J. Wagg. Novel coupling rosenbrock-based algorithms for real-time dynamic substructure testing. Earthquake Engineering and Structural Dynamics: In Press, 2007.

    Google Scholar 

  • O. S. Bursi and P. B. Shing. Evaluation of some implicit time-stepping algorithms for pseudodynamic tests. Earthquake Engineering and Structural Dynamics, 25(4):333–355, 1996.

    Article  Google Scholar 

  • D. M. Bushnell. Scaling: Wind tunnel to flight. Annual Review of Fluid Mechanics, 38:111–128, 2006.

    Article  Google Scholar 

  • S. Y. Chang. Improved numerical dissipation for explicit methods in pseudodynamic tests. Earthquake Engineering & Structural Dynamics, 26(9):917–929, September 1997.

    Article  Google Scholar 

  • S. Y. Chang. The gamma-function pseudodynamic algorithm. Journal of Earthquake Engineering, 4(3):303–320, July 2000.

    Article  Google Scholar 

  • S. Y. Chang. Explicit pseudodynamic algorithm with unconditional stability. Journal of Engineering Mechanics ASCE, 128(9):935–947, September 2002.

    Article  Google Scholar 

  • S. Y. Chang. Error propagation in implicit pseudodynamic testing of nonlinear systems. Journal of Engineering Mechanics ASCE, 131(12):1257–1269, December 2005.

    Article  Google Scholar 

  • S. Y. Chang, K. C. Tsai, and K. C. Chen. Improved time integration for pseudodynamic tests. Earthquake Engineering & Structural Dynamics, 27(7):711–730, July 1998.

    Article  Google Scholar 

  • S. Y. Chu, T. T. Soong, and A. M. Reinhorn. Active, hybrid and semi-active structural control. John Wiley: Chichester, England., 2005.

    Google Scholar 

  • D. Combescure and P. Pegon. α-operator splitting time intergration technique for pseudodynamic testing error propergation analysis. Soil Dynamics and Earthquake Engineering, 16:427–443, 1997.

    Article  Google Scholar 

  • A. P. Darby, A. Blakeborough, and M. S. Williams. Real-time substructure tests using hydraulic actuator. Journal of Engineering Mechanics, 125(10): 1133–1139, 1999.

    Article  Google Scholar 

  • A. P. Darby, A. Blakeborough, and M. S. Williams. Improved control algorithm for real-time substructure testing. Earthquake Engineering and Structural Dynamics, 30:431–448, 2001.

    Article  Google Scholar 

  • A. P. Darby, M. S. Williams, and A. Blakeborough. Stability and delay compensation for real-time substructure testing. ASCE Journal of Engineering Mechanics, 128(12):1276–1284, 2002.

    Article  Google Scholar 

  • J. de Carufel, E. Martin, and J. C. Piedboeuf. Control strategies for hardware-in-the-loop simulation of flexible space robots. IEE Proceedings-Control Theory and Applications, 147(6):569–579, November 2000.

    Article  Google Scholar 

  • O. Diekmann, S. van Gils, S. M. Verduyn Lunel, and H.O. Walther. Delay equations, volume 110. Applied Mathematical Sciences, 1995.

    Google Scholar 

  • J. Donea, P. Magonette, P. Negro, P. Pegon, A. Pinto, and G. Verzeletti. Pseudodynamic capabilities of the elsa laboratory for earthquake testing of large structures. Earthquake Spectra, 12(1):163–180, 1996.

    Article  Google Scholar 

  • S. Driscoll, J. D. Huggins, and W. J. Book. Electric motors coupled to hydraulic motors as actuators for hydraulic hardware-in-the-loop simulation. In Proceedings of ASME International Mechanical Engineering Congress and Exposition, number IMECE2005-82124, Orlando, Florida USA, November 5–11 2005.

    Google Scholar 

  • K. Engelborghs, T. Luzyanina, and D. Roose. Numerical bifurication analysis of delay differential equations using dde-biftool. ACM Transactions on Mathematical Software, 28(1): 1–21, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • P. T. Faithfull, R. J. Ball, and R. P. Jones. An investigation into the use of hardware-in-the-loop simulation with a scaled physical prototype as an aid to design. Journal of Engineering Design, 12(3):231–243, September 2001.

    Article  Google Scholar 

  • H. K. Fathy, R. Ahlawat, and J. L. Stein. Proper powertrain modeling for engine-in-the-loop simulation. In Proceedings of the ASME International Engineering Congress and Exposition, number IMECE2005-81592, 2006.

    Google Scholar 

  • J. A. Ferreira, F. G. Almeida, M. R. Quintas, and J. P. E. de Oliveira. Hybrid models for hardware-in-the-loop simulation of hydraulic systems part 1: theory. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering, 218(I6):465–474, September 2004a.

    Article  Google Scholar 

  • J. A. Ferreira, F. G. Almeida, M. R. Quintas, and J. P. E. de Oliveira. Hybrid models for hardware-in-the-loop simulation of hydraulic systems part 2: experiments. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering, 218(I6):475–486, September 2004b.

    Article  Google Scholar 

  • A. Ganguli, A. Deraemaeker, M. Horodinca, and A. Preumont. Active damping of chatter in machine toolsdemonstration with a ‘hardware-in-the-loop’ simulator. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering, 219(I5):359–369, August 2005.

    Article  Google Scholar 

  • P. J. Gawthrop, Jones, R. W., and D. G. Sbarbaro. Emulator-based control and internal model control: complementary approaches to robust control design. Automatica, 32(8):1223–1227, August 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • P.J. Gawthrop, S.A. Neild, M.I. Wallace, and D.J. Wagg. Robust real-time substructuring techniques for lightly-damped systems. Journal of Structural Control & Health Monitoring, 14(4):591–608, 2007.

    Article  Google Scholar 

  • P.J. Gawthrop, M.I. Wallace, and D.J. Wagg. Bond-graph based substructuring of dynamical systems. Earthquake Engineering and Structrural Dynamics., 34(6):687–703, 2005.

    Google Scholar 

  • A. Gonzalez-Buelga, D. J. Wagg, and S. A. Neild. Parametric variation of a coupled pendulum-oscillator system using real-time dynamic substructuring. Structural Control and Health Monitoring: In Press, 2007.

    Google Scholar 

  • G. C. Goodwin, S. F. Graebe, and M. E. Salgado. Control System Design. Pearson, 2000.

    Google Scholar 

  • K. S. Hong, H. C. Sohn, and J. K. Hedrick. Modified skyhook control of semi-active suspensions: A new model, gain scheduling, and hardware-in-the-loop tuning. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 124(1):158–167, March 2002.

    Article  Google Scholar 

  • T. Horiuchi, M. Inoue, T. Konno, and Y. Namita. Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber. Earthquake Engineering and Structural Dynamics, 28:1121–1141, 1999.

    Article  Google Scholar 

  • W. Hu and N. M. Wereley. Magnetorheological fluid and elastomeric lag damper for helicopter stability augmentation. International Journal of Modern Physics B, 19(7–9):1471–1477, April 2005.

    Article  Google Scholar 

  • S. Jezernik. Hardware-in-the-loop simulation and analysis of magnetic recording of nerve activity. Journal of Neuroscience Methods, 142(2): 295–304, March 2005.

    Article  Google Scholar 

  • R. Y. Jung and P. B. Shing. Performance evaluation of a real-time pseudodynamic test system. Earthquake Engineering & Structural Dynamics, 35(7):789–810, June 2006.

    Article  Google Scholar 

  • D. L. Kunz. Elastomer modelling for use in predicting helicopter lag damper behavior. Journal of Sound & Vibration, 226(3):585–594, September 1999.

    Article  Google Scholar 

  • Y. N. Kyrychko, K. B. Blyuss, A. Gonzalez-Buelga, S. J. Hogan, and D.J. Wagg. Real-time dynamic substructuring in a coupled oscillatorpendulum system. Proceedings of the Royal Society A, 426(2068):1271–1294, 2005.

    MathSciNet  Google Scholar 

  • P. Lambrechts, M. Boerlage, and M. Steinbuch. Trajectory planning and feedforward design for electromechanical motion systems. Control Engineering Practice, 13(2):145–157, February 2005.

    Article  Google Scholar 

  • C.M. Lim, S.A. Neild, D.P. Stoten, C.A. Taylor, and D. Drury. Using adaptive control for dynamic substructuring tests. Proc. of the 3rd European Conf. on Structural Control, 2004.

    Google Scholar 

  • Yu-Yuan Lin, Kuo-Chun Chang, and Yuan-Li Wang. Comparison of displacement coefficient method and capacity spectrum method with experimental results of re columns. Earthquake Engineering & Structural Dynamics, 33(1):35–48, 2004.

    Article  Google Scholar 

  • D. Maclay. Simulation gets into the loop. IEE Review, 43(3):109–112, May 1997.

    Article  Google Scholar 

  • S. P. Mansoor, D. I. Jones, D. A. Bradley, F. C. Aris, and G. R. Jones. Hardware-in-the-loop simulation of a pumped storage hydro station. International Jornal of Power and Energy Systems, 23(2):127–133, 2003.

    Google Scholar 

  • S. McGreevy, T. T. Soong, and A. M. Reinhorn. An experimental study of time delay compensation in active structural control. In Proceedings of the 6th International Modal Analysis Conference-IMAC, volume 1, pages 733–739, 1988.

    Google Scholar 

  • W. E. Misselhorn, N. J. Theron, and P. S. Els. Investigation of hardware-in-the-loop for use in suspension development. Vehicle System Dynamics, 44(1):65–81, anuary 2006.

    Article  Google Scholar 

  • M. Nakashima. Development, potential, and limitations of real-time online (pseudo dynamic) testing. Philosophical Transactions of the Royal Society A, 359(1786):1851–1867, 2001.

    Article  Google Scholar 

  • M. Nakashima, H. Kato, and E. Takaoka. Development of real-time pseudo dynamic testing. Earthquake Engineering and Structural Dynamics, 21: 779–92, 1992.

    Article  Google Scholar 

  • M. Nakashima and N. Masaoka. Real-time on-line test for mdof systems. Earthquake Engineering and Structural Dynamics, 28:393–420, 1999.

    Article  Google Scholar 

  • S. A. Neild, D. P. Stoten, D. Drury, and D. J. Wagg. Control issues relating to real-time substructuring experiments using a shaking table. Earthquake Engineering and Structural Dynamics, 34:1171–1192, 2005.

    Article  Google Scholar 

  • P. Pan, M. Nakashima, and H. Tomofuji. Online test using displacement-force mixed control. Earthquake Engineering & Structural Dynamics, 34(8): 869–888, July 2005.

    Article  Google Scholar 

  • B. Panda, E. Mychalowycz, and F. J. Tarzanin. Application of passive dampers to modern helicopters. Smart Materials & Structures, 5(5): 509–516, October 1996.

    Article  Google Scholar 

  • A.V. Pinto, P. Pegon, G. Magonette, and G. Tsionis. Pseudo-dynamic testing of bridges using non-linear substructuring. Earthquake Engineering and Structural Dynamics, 33:1125–1146, 2004.

    Article  Google Scholar 

  • A. R. Plummer. Model-in-the-loop testing. Proc IMechE Part I-Journal of Systems and Control Engineering, 220(I3):183–199, May 2006.

    Article  Google Scholar 

  • A. Preumont. Vibration control of active structures. Kluwer: Dordrecht, 2002.

    MATH  Google Scholar 

  • J. S. Prezemieniecki. Theory of matrix structural analysis. McGraw-Hill, 1968.

    Google Scholar 

  • W. Rulka and E. Pankiewicz. Mbs approach to generate equations of motions for hil-simulations in vehicle dynamics. Multibody system dynamics, 14(3–4):367–386, November 2005.

    Article  MATH  Google Scholar 

  • R. T. Severn. Ecoest—european consortium of earthquake shaking tables— overview. In 10th European Conference on Earthquake Engineering, pages 2987–2992. Balkema: Rotterdam, 1995.

    Google Scholar 

  • P-S. Shing and S. A. Mahin. Cumulative experimental errors in pseudodynamic tests. Earthquake Engineering and Structural Dynamics, 15: 409–424, 1987.

    Article  Google Scholar 

  • P-S. Shing, M. T. Vannan, and E. Cater. Implicit time intergration for pseudodynamic tests. Earthquake Engineering and Structural Dynamics, 20:551–576, 1991.

    Article  Google Scholar 

  • M.V. Sivaselvan, A. Reinhorn, Z. Liang, and X. Shao. Real-time dynamic hybrid testing of structural systems. Proc. 13th World Conf. Earthquake Engineering, 2004.

    Google Scholar 

  • E. C. Smith, K. Govindswamy, M. R. Beale, and G. A. Lesieutre. Formulation, validation, and application of a finite element model for elastomeric lag dampers. Journal of the American Helicopter Society, 41(3):247–256, July 1996.

    Article  Google Scholar 

  • T. T. Soong. Active Structural Control: Theory and Practice. Longman, London and Wiley, New York, 1990.

    Google Scholar 

  • G. Stépan. Retarded Dynamical Systems: Stability and Characteristic Functions. Longman Scientific & Technical, 1989.

    Google Scholar 

  • C. Thewalt and M. Roman. Performance parameters for pseudodynamic tests. Journal of Structural Engineering, 120(9):2768–2781, 1994.

    Article  Google Scholar 

  • D. J. Wagg and D. P. Stoten. Substructuring of dynamical systems via the adaptive minimal control synthesis algorithm. Earthquake Engineering and Structural Dynamics, 30:865–877, 2001.

    Article  Google Scholar 

  • M. Wallace, D.J. Wagg, and S.A. Neild. A stability analysis of substructured systems for real-time dynamic substructuring. In Proceedings of the 1st International Conference on Advances in Experimental Structural Engineering, volume 1, pages 385–392, 2004a.

    Google Scholar 

  • M. I. Wallace. Real-time dynamic substructuring for mechanical and aerospace applications: control techniques and experimental methods. PhD thesis, University of Bristol, 2006.

    Google Scholar 

  • M. I. Wallace, D. J. Wagg, and S. A. Neild. Use of control techniques for error analysis of real time dynamic substructure testing. In Proceedings of the Third European Conference on Structural Control, volume 1, pages 59–62, 2004b.

    Google Scholar 

  • M. I. Wallace, D. J. Wagg, S. A. Neild, P. C. Bunnis, N. A. Lieven, and A. J. Crewe. Testing coupled rotor blade-lag damper vibration dynamics using real-time dynamic substructuring. Journal of Sound and Vibration: In Press, 2007.

    Google Scholar 

  • M.I. Wallace, J. Sieber, S. A. Neild, D.J. Wagg, and B. Krauskopf. Stability analysis of real-time dynamic substructuring using delay differential equation models. International Journal of Earthquake Engineering and Structural Dynamics, 34(15):1817–1832, 2005a.

    Article  Google Scholar 

  • M.I. Wallace, D.J. Wagg, and S. A. Neild. An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring. Proceedings of the Royal Society of London A., 461(2064): 3807–3826, 2005b.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Wang, M. Nakashima, and P. Pan. On-line hybrid test combining with general-purpose finite element software. Earthquake Engineering & Structural Dynamics, 35(12):1471–1488, October 2006.

    Article  Google Scholar 

  • B. Wu, G. Xu, Q. Wang, and M. S. Williams. Operator-splitting method for real-time substructure testing. Earthquake Engineering and Structural Dynamics, 35:293–314, 2006.

    Article  Google Scholar 

  • R. Zhang and A. G. Alleyne. Dynamic emulation using an indirect control input. Journal of Dynamic Systems Measurement and Control — Transactions of the ASME, 127(1):114–124, March 2005.

    Article  Google Scholar 

  • W. D. Zhu, S. Pekarek, J. Jatskevich, O. Wasynczuk, and D. Delisle. A model-in-the-loop interface to emulate source dynamics in a zonal dc distribution system. IEEE Transactions on Power Electronics, 20(2): 438–445, March 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 CISM, Udine

About this chapter

Cite this chapter

Wagg, D., Neild, S., Gawthrop, P. (2008). Real-Time Testing With Dynamic Substructuring. In: Bursi, O.S., Wagg, D. (eds) Modern Testing Techniques for Structural Systems. CISM International Centre for Mechanical Sciences, vol 502. Springer, Vienna. https://doi.org/10.1007/978-3-211-09445-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-09445-7_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-09444-0

  • Online ISBN: 978-3-211-09445-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics