Skip to main content

Computational Techniques for Simulation of Monolithic and Heterogeneous Structural Dynamic Systems

  • Chapter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 502))

Abstract

The prediction of the transient dynamic response of monolithic structural systems, as well as of heterogeneous (numerical/ physical) subsystems, decomposed by computational or physical considerations typical of hardware-in-the-loop and pseudo-dynamic tests using numerical integration, has become an accepted practice almost to the extent that such solutions in non-linear problems often are considered to be exact solutions. It is for this reason that this chapter is placed immediately at the beginning of the book.

In light of the large body of literature on computational methods developed for both testing and control techniques applied to linear and non-linear systems, no attempt is made to cover this subject in greater depth. Rather the concepts upon which ad hoc computational methods rely are presented in a common framework along with a few applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • M. Arnold and O. Brüls. Convergence of the generalized-α scheme for constrained mechanical systems. Multibody Syst Dyn, 18:185–202, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Arnold, B. Burgermeister, and A. Eichberger. Linearly implicit time integration methods in real-time applications: DAEs and stiff ODEs. Multibody System Dynamics, 17:99–117, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  • G. Baldo, A. Bonelli, O. Bursi, and S. Erlicher. The accuracy of the generalized method in the time integration of non linear single and two DoF forced systems. Computational Mechanics, 38:15–31, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  • V. Bayer, U. E. Dorka, U. Füllekrug, and J. Gschwilm. On real-time pseudodynamic sub-structure testing: algorithm, numerical and experimental results. Aerospace Science and Technology, 9:223–232, 2005.

    Article  Google Scholar 

  • B. Biondi and G. Muscolino. Component-mode synthesis method variants in the dynamics of coupled structures. Meccanica, 35:17–38, 2000.

    Article  MATH  Google Scholar 

  • A. Bonelli and O. S. Bursi. Generalized-α methods for seismic structural testing. Earthquake Engineering and Structural Dynamics, 33(10): 1067–1102, 2004.

    Article  Google Scholar 

  • A. Bonelli, O. S. Bursi, and M. Mancuso. Explicit predictor-multicorrector time discontinuons Galerkin methods for non-linear dynamics. Journal of Sound and Vibration, 246(4):625–652, 2001.

    Article  MathSciNet  Google Scholar 

  • A. Bonelli, O. S. Bursi, and M. Mancuso. Explicit predictor-multicorrector time discontinuons Galerkin methods for non-linear dynamics. Journal of Sound and Vibration, 256(4):659–724, 2002.

    Article  MathSciNet  Google Scholar 

  • A. Bonelli, O. S. Bursi, L. He, P. Pegon, and G. Magonette. Convergence analysis of a parallel interfield method for heterogeneous simulations with dynamic substructuring. International Journal for Numerical Methods in Engineering, 2008. DOI: 10.1002/nme.2285.

    Google Scholar 

  • P. A. Bonnet, C. N. Lim, M. S. Williams, A. Blakeborough, S. A. Neild, D. P. Stoten, and C. A. Taylor. Real-time hybrid experiments with Newmark integration, MCSmd outer-loop control and multi-tasking strategies. Earthquake Engineering and Structural Dynamics, 36(1):577–588, 2007.

    Article  Google Scholar 

  • P. A. Bonnet. The development of multi-axis real-time substructure testing. PhD thesis, University of Oxford, 2006.

    Google Scholar 

  • O. Brüls and J. C. Golinval. On the numerical damping of time integrators for coupled mechatronic systems. Computer Methods in Applied Mechanics and Engineering, 197:577–588, 2008.

    Article  MathSciNet  Google Scholar 

  • B. Burgermeister, M. Arnold, and B. Ester. DAE time integration for realtime applications in multi-body dynamics. ZAMM Z. Angew. Math. Mech., 86(10):759–771, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  • O. S. Bursi and M. Mancuso. Analysis and performance of a predictormulticorrector time discontinuous Galerkin method in non-linear elastodynamics. Earthquake engineering and structural dynamics, 31:1793–1814, 2002.

    Article  Google Scholar 

  • O. S. Bursi and P. B. Shing. Evaluation of some implicit time-stepping algorithms for pseudodynamic tests. Earthquake engineering and structural dynamics, 25:333–355, 1996.

    Article  Google Scholar 

  • O. S. Bursi D. P. Stoten, and L. Vulcan. Convergence and frequencydomain analysis of a discrete first-order model reference adaptive controller. Structural Control and Health Monitoring, 14:777–807, 2007.

    Article  Google Scholar 

  • O. S. Bursi, B. A. Gonzalez, L. Vulcan, N. A. Neild, and D. J. Wagg. Novel coupling Rosenbrock-based algorithms for real-time dynamic substructure testing. Earthquake Engineering and Structural Dynamics, 37(3): 339–360, 2008.

    Article  Google Scholar 

  • J. C. Butcher. Numerical Methods for Ordinary Differential Equations. Wiley, 2003.

    Google Scholar 

  • V. Cannillo and M. Mancuso. Spurious resonances in numerical time integration methods for linear dynamics. Journal of Sound and Vibration, 238(3):389–399, 2000.

    Article  MathSciNet  Google Scholar 

  • S. Y. Chang. Error propagation in implicit pseudodynamic testing of nonlinear systems. Journal of Engineering Mechanics, 131(12):1257–1269, 2005.

    Article  Google Scholar 

  • S.-Y. Chang. An improved on-line dynamic testing method. Engineering Structures, 24:587–596, 2002.

    Article  Google Scholar 

  • S. Y. Chu, T. T. Soong, C. C. Lin, and Y. Z. Chen. Time-delay effect and compensation on direct output feedback controlled mass damper systems. Earthquake Eng. and Struct. Dyn., 31(1):121–137, 2002.

    Article  Google Scholar 

  • S. Y. Chu, T. T. Soong, and A. M. Reinhorn. Active, Hybrid, and Semiactive Structural Control: A Design and Implementation Handbook. Wiley, Chichester, 2005.

    Google Scholar 

  • J. Chung and G. M. Hulbert. A, time integration algorithm for structural dynamics with improved numerical dissipation: the Generalized-alpha method. Journal of Applied Mechanics, 60:371–375, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Combescure and A. Gravouil. A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis. Computer Methods in Applied Mechanics and Engineering, 191: 1129–1157, 2002.

    Article  MATH  Google Scholar 

  • D. Combescure and P. Pegon. α-Operator Splitting time integration technique for pseudodynamic testing error propagation analysis. Soil Dynamics and Earthquake Engineering, 16:427–443, 1997.

    Article  Google Scholar 

  • J. Cuadrado, J. Cardenal, and E. Bayo. Modeling and solution methods for efficient real-time simulation of multibody dynamics. Multibody System Dynamics, 1:1897–1913, 1997.

    Article  MathSciNet  Google Scholar 

  • G. Dahlquist. A special stability problem for linear multistep methods. BIT Numerical Mathematics, 3(1):27–43, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  • W. J. T. Daniel. Explicit/implicit partitioning and a new explicit form of the generalized alpha method. Communications in numerical methods in engineering, 19:909–920, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • A. P. Darby, M. S. Williams, and A. Blakeborough. Stability and delay compensation for real-time substructure testing. Journal of Engineering Mechanics, 128(12):1276–1284, 2002.

    Article  Google Scholar 

  • J. R. Dormand and P. J. Prince. A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 6:19–26, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  • Real-time interface, Implementation guide, Release 3.2. dSPACE GmbH, Paderborn, Germany, 2001.

    Google Scholar 

  • S. Erlicher, L. Bonaventura, and O. S. Bursi. The analysis of generalized-α methods for non-linear dynamic problems. Computational Mechanics, 28:83–104, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • C. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering, 32:1205–1227, 1991.

    Article  MATH  Google Scholar 

  • C. Farhat, P.S. Chen, and J. Mandel. A scalable Lagrange multiplier based domain decomposition method for time dependent problems. International Journal for Numerical Methods in Engineering, 38:3831–3854, 1995.

    Article  MATH  Google Scholar 

  • C. Farhat, J. Cortial, C. Dastillung, and H. Bavestrello. Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses. International Journal for Numerical Methods in Engineering, 67:697–724, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  • C. A. Felippa and K. C. Park. Staggered transient analysis procedures for coupled dynamic systems: formulation. Comp. Meths. Appl. Mech. Engrg., 24:61–112, 1980.

    Article  MATH  Google Scholar 

  • C. A. Felippa, K.C. Park, and C. Farhat. Partitioned analysis of coupled mechanical systems. Computer Methods in Applied Mechanics and Engineering, 190:3247–3270, 2001.

    Article  MATH  Google Scholar 

  • G. F. Franklin and J. D. Powell. Digital Control of Dynamic Systems. Addison-Wesley Publishing Company, New York, 1980.

    Google Scholar 

  • A. Gravouil and A. Combescure. Multi-time-step explicit-implicit method for non-linear structural dynamics. International Journal for Numerical Methods in Engineering, 50:199–225, 2001.

    Article  MATH  Google Scholar 

  • E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, 1996.

    Google Scholar 

  • E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Problems. Springer-Verlag, 1987.

    Google Scholar 

  • L. He. Development of Partitioned Time Integration Schemes for Parallel Simulation of Heterogeneous Systems. PhD thesis, University of Trento, 2008.

    Google Scholar 

  • H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics, 5:283–292, 1977.

    Article  Google Scholar 

  • T. Horiuchi, M. Inoue, T. Konno, and Namita Y. Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber. Earthquake Eng. and Struct. Dyn., 28(10):1121–1141, 1999.

    Article  Google Scholar 

  • T. J. R. Hughes. The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1987.

    MATH  Google Scholar 

  • T. J. R. Hughes and G. M. Hulbert. Space-time finite element methods for elastodynamics: formulations and error estimates. Computer Methods in Applied Mechanics and Engineering, 66:339–363, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  • T. J. R. Hughes, K. S. Pister, and R. L. Taylor. Implicit-explicit finite elements in non-linear transient analysis. Computer Methods in Applied Mechanics and Engineering, 17/18:159–182, 1979.

    Article  Google Scholar 

  • G. M. Hulbert. Space-time finite element methods: 1970’s and Beyond, chapter An Overview of Variational Integrators, pages 116–123. CIMNE, Barcelona, Spain, 2004.

    Google Scholar 

  • G. M. Hulbert and J. Chung. The unimportance of the spurious root of time integration algorithms for structural dynamics. Communications in Numerical Methods in Engineering, 10:591–597, 1994.

    Article  MATH  Google Scholar 

  • G. M. Hulbert and T. J. R. Hughes. An error analysis of truncated starting conditions in step-by-step time integration: Consequences for structural dynamics. Earthquake Engineering and Structural Dynamics, 15:901–910, 1987.

    Article  Google Scholar 

  • G. M. Hulbert and J. Chung. Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Computer Methods in Applied Mechanics and Engineering, 137:175–188, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Y. Jung, P. B. Shing, E. Stauffer, and B. Thoen. Performance of a real-time pseudodynamic test system considering nonlinear structural response. Earthquake Engineering and Structural Dynamics, 32:1785–1809, 2007.

    Article  Google Scholar 

  • R. Kübler and W. Schiehlen. Modular simulation in multibody system dynamics. Multibody System Dynamics, 4:107–127, 2004.

    Article  Google Scholar 

  • Y. N. Kyrychko, K. B. Blyuss, A. Gonzalez-Buelga, S. J. Hogan, and D. J. Wagg. Real-time dynamic substructuring in a coupled oscillatorpendulum system. Proceedings of the Royal Society A, 462:1271–1294, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  • L. M. Lacoma and I. Romero. Error estimation for hht method in non-linear solid dynamics. Computers and structures, 85:158–169, 2007.

    Article  MathSciNet  Google Scholar 

  • J. D. Lambert. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, 1991.

    Google Scholar 

  • X. D. Li and N. E. Wiberg. Structural dynamic analysis by a time-discontinuous galerkin finite element method. International Journal for Numerical Methods in Engineering, 39:2131–2152, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • C. N. Lim, S.A. Neild, D. P. Stoten, and D. Drury. Real-time dynamic substructure testing via an adaptive control strategy. 1st International Conference on Advances in Experimental Structural Engineering, Nagoya, Japan, pages 393–400, 2005.

    Google Scholar 

  • F. Lopez-Almansa, A. H. Barbat, and J. Rodellar. SSP algorithm for linear and non-linear dynamic response simulation. International Journal for Numerical Methods in Engineering, 26(12):2687–2706, 1998.

    Article  Google Scholar 

  • Simulink: simulation and model-based design. The Math Works, Natick, MA, 2005.

    Google Scholar 

  • W. E. Misselhorn, N. J. Theron, and P. S. Els. Investigation of hardware-in-the-loop for use in suspension development. Vehicle System Dynamics, 44:65–81, 2006.

    Article  Google Scholar 

  • C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix. SIAM Review, 45:1–46, 1978.

    Google Scholar 

  • G. Mosqueda, B. Stojadinovic, and S.A. Mahin. Real-time error monitoring for hybrid simulation. part I: Methodology and experimental verification. Journal of Structural Engineering, ASCE, 133(8):1100–1108, 2007a.

    Article  Google Scholar 

  • G. Mosqueda, B. Stojadinovic, and S.A. Mahin. Real-time error monitoring for hybrid simulation. part II: Structural response modification due to error. Journal of Structural Engineering, ASCE, 133(8):1109–1117, 2007b.

    Article  Google Scholar 

  • A. Mugan and G. M. Hulbert. Alternative characterization of time integration schemes. International Journal for Numerical Methods in Engineering, 51(3):351–376, 2001.

    Article  MATH  Google Scholar 

  • M. Nakashima, T. Kaminosomo, M. Ishida, and K. Ando. Integration techniques for substructuring pseudodynamic test. In fourth U.S. National Conference on Earthquake Engineering, volume 2, Palm Springs, California, 1990.

    Google Scholar 

  • P. Nawrotzki and C. Eller. Numerical stability analysis in structural dynamics. Comput. Methods Appl. Mech. Engrg., 189:915–929, 2000.

    Article  MATH  Google Scholar 

  • S. A. Neild, D. P. Stoten, D. Drury, and D. J. Wagg. Control issues relating to real-time substructuring experiments using a shaking table. Earthquake Engineering and Structural Dynamics, 34(9):1171–1192, 2005.

    Article  Google Scholar 

  • N. M. Newmark. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division ASCE, 85:67–94, 1959.

    Google Scholar 

  • K. C. Park and Carlos A. Felippa. A variational principle for the formulation of partitioned structural systems. Int. J. Numer. Meth. Engng., 47:395–418, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Pegon. Alternative characterization of time integration schemes. Computer Methods in Applied Mechanics and Engineering, 190(20):2707–2727, 2001.

    Article  MATH  Google Scholar 

  • P. Pegon. Continuous psd testing with substructuring. In O. S. Bursi and D. J. Wagg, editors, Modern Testing Techniques for Structural Systems, Dynamics and Control. CISM, 2008.

    Google Scholar 

  • P. Pegon and G. Magonette. Continuous PSD testing with non-linear substructuring: Presentation of, a stable parallel inter-field procedure. Technical Report I.02.167, E.C., JRC, ELSA Ispra, Italy, 2005.

    Google Scholar 

  • P. Pegon and G. Magonette Continuous PsD testing with non-linear substructuring: using the operator splitting technique to avoid iterative procedures. Technical Report SPI.05.30, E.C., JRC, ELSA, Ispra, Italy, 2005.

    Google Scholar 

  • A. V. Pinto, P. Pegon, G. Magonette, and G. Tsionis. Pseudo-dynamic testing of bridges using non-linear substructuring. Earthquake Engineering and Structural Dynamics, 33:1125–1146, 2004.

    Article  Google Scholar 

  • V. M. Popov. Hyperstability of Automatic control systems. Springer-Verlag, New York, 1973.

    Google Scholar 

  • A. Preumont. Frequency domain analysis of time integration operators. Earthquake Engineering and Structural Dynamics, 10(5):691–697, 1982.

    Article  Google Scholar 

  • AM. Reinhorn, MV. Sivaselvan, Z. Liang, and X. Shao. Real-time dynamic hybrid testing of structural systems. In Proceeding of the 13th World Conference on Earthquake Engineering Vancouver, Canada, 2004.

    Google Scholar 

  • H. H. Rosenbrock. Some general implicit processes for the numerical solution of differential equations. Computer Journal, 5:329–330, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  • J. C. Samin, O. Brüls, J. F. Collard, L. Sass, and P. Fisette. Multiphysics modeling and optimization of mechatronic multibody systems. Multibody System Dynamics, 18:345–373, 2007.

    Article  MATH  Google Scholar 

  • J. D. Sherrick. Concepts In Systems and Signals. Prentice Hall, 2004.

    Google Scholar 

  • P. B. Shing. Real-time hybrid testing techniques. In O. S. Bursi and D. J. Wagg, editors, In Modern Testing Techniques for Structural Systems, Dynamics and Control. CISM, 2008.

    Google Scholar 

  • P. B. Shing and M. T. Vannan. On the accuracy of an implicit time integration for pseudodynamic tests. Earthquake Engineering and Structural Dynamics, 19:631–651, 1990.

    Article  Google Scholar 

  • P. B. Shing, M. T. Vannan, and E. Cater. Implicit time integration for pseudodynamic tests. Earthquake Engineering and Structural Dynamics, 20:551–576, 1991.

    Article  Google Scholar 

  • P. B. Shing, O. S. Bursi, and M.T. Vannan. Pseudodynamic tests of a concentrically braced frame using substructuring techniques. J. of Construct. Steel Research, 29:121–148, 1994.

    Article  Google Scholar 

  • A. Soroushian, P. Wriggers, and J. Farjoodi. On practical integration of semi-discretized equations of motion part 1: reasons for probable instability and improper convergence. Journal of Sound and Vibration, 18: 705–731, 2005.

    Article  MathSciNet  Google Scholar 

  • D. P. Stoten and H. Benchoubane. Empirical studies of an mrac algorithm with minimal controller synthesis. International Journal of Control, 51(4):823–849, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • D. P. Stoten and S. A. Neild. The error-based minimal control synthesis algorithm with integral action. Proc. of the Institetion of Mechanical Engineers, Part I: Journal of systems and Control Engineering, 217:187–201, 2003.

    Article  Google Scholar 

  • C. R. Thewalt and S. A. Mahin. Hybrid solution techniques for generalized pseudodynamic testing. Technical Report No. UCB/EERC-87/09, Earthquake Engineering Research Center, University of California Berkeley, CA, 1987.

    Google Scholar 

  • R. J. Vaccaro. Digital Control — A State-Space Approach. McGraw-Hill, New York, 1995.

    Google Scholar 

  • V. R. Vasquez and W. B. Whiting. Accounting for both random errors and systematic errors in uncertainty propagation analysis of computer models involving experimental measurements with monte carlo methods. Risk Analysis, 25(6):1669–1681, 2006.

    Article  Google Scholar 

  • L. Vulcan. Discrete-time analysis of integrator algorithms applied to S.I.S.O adaptive controllers with minimal control systhesis PhD thesis, University of Trento, Italy, 2006.

    Google Scholar 

  • D. J. Wagg, S. A. Neild, and P. Gawthrop. Real-time testing with dynamic substructuring. In O. S. Bursi and D. J. Wagg, editors, Modern Testing Techniques for Structural Systems, Dynamics and Control. CISM, 2008.

    Google Scholar 

  • M.I. Wallace, J. Sieber, S.A. Neild, D.J. Wagg, and B. Krauskopf. Stability analysis of real-time dynamic substructuring using delay differential equation models. Earthquake Engineering and Structural Dynamics, 34(15):1817–1832, 2004.

    Article  Google Scholar 

  • M. I. Wallace, D. J. Wagg, and S. A. Neild An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring. Proceedings of the Royal Society A, 2064(461):3807–3826, 2005.

    Article  MathSciNet  Google Scholar 

  • N. E. Wiberg and X. D. Li. A post-processing technique and an a posteriori error estimate for the Newmark method in dynamic analysis. Earthquake Engineering and Structural Dynamics, 22(6):465–489, 1993.

    Article  Google Scholar 

  • M. S. Williams and A. Blakeborough. Laboratory testing of structures under dynamic loads: an introductory review. Philosophical Transactions of the Royal Society of London, Series A, 359(1786):1651–1670, 2001.

    Article  Google Scholar 

  • B. Wu, H. Bao, J. Ou, and S. Tian. Stability and accuracy analysis of the central difference method for real-time substructure testing. Earthquake Engineering and Structural Dynamics, 34(7):705–718, 2005.

    Article  Google Scholar 

  • B. Wu, G. Xu Q. Wang, and M. S. Williams. Operator-splitting method for real-time substructure testing. Earthquake Engineering and Structural Dynamics, 35(3):293–314, 2006.

    Article  Google Scholar 

  • D. M. Young. Iterative Solution of Large Linear System. Academic Press, Orlando, 1971.

    Google Scholar 

  • Q. Zhang and T. Hisada. Studies of the strong coupling and weak coupling methods in fsi analysis. International Journal for Numerical Methods in Engineering, 60:2013–2029, 2004.

    Article  MATH  Google Scholar 

  • Y. Zhang, R. Sause, J. M. Ricles, and C. J. Naito. Modified predictorcorrector numerical scheme for real-time pseudo dynamic tests using state-space formulations. Earthquake Engineering and Structural Dynamics, 34(3):271–288, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 CISM, Udine

About this chapter

Cite this chapter

Bursi, O.S. (2008). Computational Techniques for Simulation of Monolithic and Heterogeneous Structural Dynamic Systems. In: Bursi, O.S., Wagg, D. (eds) Modern Testing Techniques for Structural Systems. CISM International Centre for Mechanical Sciences, vol 502. Springer, Vienna. https://doi.org/10.1007/978-3-211-09445-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-09445-7_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-09444-0

  • Online ISBN: 978-3-211-09445-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics