Skip to main content

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 73))

  • 150 Accesses

Abstract

1. We study some stability question for the Abel equation

$$\frac{1}{{\Gamma (\alpha)}}\smallint _0^x\frac{{K(x,t)u(t)}}{{{{(x - t)}^{1 - \alpha}}}} dt = f(x) (0 \leqslant x \leqslant 1)$$
((1.1))

Here 0<α<1 f and K are given, u is the unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.H. Abel, “Resolution d’un probleme de mecanique”. Oeuvres, vol. 1 Christiania (1881), 97101.

    Google Scholar 

  2. R.A. Adams, Sobolev spaces. ( Academic Press, New York, 1975 ).

    Google Scholar 

  3. N.Y.Bakaev - R.P. Tarasov, “Semigroups and a method for stability solving the Abel equation”. Siberian Math. J. 19 (1978)n.l, 1–5.

    Article  Google Scholar 

  4. A.L.Bugheim, Volterra equations and inverse problems. (in russian).(Nau ka Publishing Company, Siberian Branch, Novosibirsk 1983 ).

    Google Scholar 

  5. J. Dieudonne, Calcul infinitesimal. ( Hermann, Paris, 1968 ).

    Google Scholar 

  6. J. Garmany, “On the inversion of travel times”. Geophys. Res. Letts 6, (4), (1979), 277–279.

    Article  Google Scholar 

  7. J. Garmany, J.A., Orcutt, R.L. Parker, “Travel time inversion: a geometri cal approach”. J. Geophys.Res. 84, (B7), (1979), 3615–3622.

    Article  Google Scholar 

  8. G.H. Hardy, J.E. Littlewood, “Some properties of fractional integrals”. Math. Zeit., 27 (1928), 565–606

    Article  Google Scholar 

  9. G.H.Hardy, J.E.Littlewood, G.Polya, Inequalities. ( Cambridge University Press, Cambridge, 1978 ).

    Google Scholar 

  10. G.Kowalewskii, Integralgleichungen. ( Waltes de Graytes & Co., Berlin, 1930 ).

    Google Scholar 

  11. M.M.Lavrent, ev, V.G. Romanov-S.P. Sisatskij, Vrdblemi non ben posti in Fisica Matematica e Analisi. (Quaderno I.A.G.A.; Serie “problemi non ben posti ed inversi” n. 12, 1983 ).

    Google Scholar 

  12. S.G.Mikhlin, Mathematical Physiscs an advanced course. ( North-Holland Publishing Co., Amsterdam-London, 1970 ).

    Google Scholar 

  13. F.G. Tricomi, Integral equations. ( Interscience Publisher, New York, 1957 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Vessella, S. (1985). Stability Results for Abel Equation. In: Hämmerlin, G., Hoffmann, KH. (eds) Constructive Methods for the Practical Treatment of Integral Equations. International Series of Numerical Mathematics, vol 73. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9317-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9317-6_23

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9993-2

  • Online ISBN: 978-3-0348-9317-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics