Skip to main content

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 73))

Abstract

We consider Gaussian quadrature formulae Q, n GIN, approximating the integral\(I({\text{f}}): = \smallint _{ - 1}^1w({\text{x}})f({\text{x}})dx.\) Let \(f({\text{z}}) = \mathop \Sigma \limits_{i = 0}^\infty \alpha _i^f{z^i}\) be analytic in \({K_r}: = \{ {\text{z}} \in \mathbb{C}:|{\text{z}}| < {\text{r}}\} ,{\text{r}} > 1\) and \(|{\text{f}}{|_{\text{r}}}{\text{: = sup\{ |}}\alpha _{\text{i}}^{\text{f}}{\text{|}}{{\text{r}}^{\text{i}}}{\text{:i}} \in {\mathbb{N}_ \circ }{\text{,}}{{\text{R}}_{\text{n}}}{\text{(}}{{\text{q}}_{\text{i}}}{\text{)}} \ne {\text{0\} < }}\infty \) where Rn = I -Qn is the error functional and qi (x):= x1. Rn is continuous with respect to | • |r and \(||{\text{Rn|| = }}\mathop \Sigma \limits_{{\text{i = 0}}}^\infty {\text{[|}}{{\text{R}}_{\text{n}}}{\text{(}}{{\text{q}}_{\text{i}}}{\text{)|/}}{{\text{r}}^{\text{i}}}{\text{]}}\) holds. For \({\text{w(x) = }}\frac{1}{{{\text{c - }}{{\text{x}}^{\text{2}}}}}{\text{(1 - x)}}\alpha {\text{(1 + x)}}\beta {\text{ = }} \pm \frac{1}{2},c > 1,\) we explicitly calculate the norm of Rn

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Akrivis, G.: The error norm of certain Gaussian quadrature formulae. Eingereicht zur Veroffentlichung.

    Google Scholar 

  2. Gautschi, W. (1983) On Pade approximants associated with Hamburger series, Calcolo 20, 111–127.

    Article  Google Scholar 

  3. Gröbner, W., N. Hofreiter (Hrsg.) (1961) Integraltafel, II. Teil, 3., verb. Aufl. ( Springer Verlag, Wien ).

    Google Scholar 

  4. Hämmerlin, G. (1972) Fehlerabschatzungen bei numerischer In tegration nach GauB. In: Methoden und Verfahren der mathema- tischen Physik, Bd. 6 ( B. Brosowski, E. Martensen, Hrsg.) 153–163 ( Bibliographisches Institut, Mannheim, Wien, Zurich ).

    Google Scholar 

  5. Kumar, R. (1974) Certain Gaussian quadratures, J. Inst. Maths Applies 14, 175–182.

    Article  Google Scholar 

  6. Kumar, R. (1974) A class of quadrature formulas, Math. Comp. 28, 769–778.

    Article  Google Scholar 

  7. Price, Jr., T.E. (1979) Orthogonal polynomials for nonclassical weight functions, SIAM J. Numer. Anal. 16 999–1006.

    Article  Google Scholar 

  8. Rivlin, T.J. (1974) The Chebyshev polynomials (John Wiley and Sons, New York, London, Sydney, Toronto).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Akrivis, G. (1985). Die Fehlernorm Spezieller Gauss-Quadraturformeln. In: Hämmerlin, G., Hoffmann, KH. (eds) Constructive Methods for the Practical Treatment of Integral Equations. International Series of Numerical Mathematics, vol 73. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9317-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9317-6_1

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9993-2

  • Online ISBN: 978-3-0348-9317-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics