Skip to main content

On lower subdifferentiable functions

  • Chapter
Trends in Mathematical Optimization

Abstract

This paper studies the notion of lower subdifferentiability from the view point of generalized conjugation. By this method the main properties of lower sub-differentiable functions are analysed. A related conjugation theory for Hölder and Lipschitz functions is developed, which is used to characterize those functions which can be expressed as a supremum of Hölder functions. Some applications to quasiconvex optimization and optimal control theory are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balder, E. J.: An extension of duality-stability relations to non convex optimization problems. SIAM J. Control. Optim. 15 (1977), 329–343.

    Article  Google Scholar 

  2. Carja, O.: On the minimal time function for distributed control systems in Banach spaces. J. Optim. Theory Appl. 44 (1984), 397–406.

    Article  Google Scholar 

  3. Crouzeix, J. P.: Polares quasi-convexes et dualité. C. R. Acad. Sc. Paris 279 (1974), 955–958.

    Google Scholar 

  4. Crouzeix, J. P.: Contributions a l’étude des fonctions quasiconvexes. Thesis, Université de Clermont-Ferrand II (1977).

    Google Scholar 

  5. Crouzeix, J. P.: Continuity and differentiability properties of quasiconvex functions on Rn. Generalized concavity in Optimization and Economics, ed. by S. Schaible and W. T. Ziemba, Academic Press (1981), 109–130.

    Google Scholar 

  6. Dolecki, S. and Kurcyusz S.: On Ф-convexity in extremal problems. SIAM J. Control Optim. 16 (1978), 277–300.

    Article  Google Scholar 

  7. Evers, J. J. M. and van Maaren, H.: Duality principles in mathematics and their relations to conjugate functions. Nieuw Arch. Wiskunde 3 (1985), 23–68.

    Google Scholar 

  8. Greenberg, H. P. and Pierskalla, W. P.: Quasiconjugate function and surrogate duality. Cahier du Centre d’etudes de Rechn. Oper. 15 (1973), 437–448.

    Google Scholar 

  9. Gutiérrez-Diez, J. M.: Infragradients y direcciones de decrecimiento. Rev. Real Acad. C. Ex., Fis. y Nat. Madrid 78 (1984), 523–532.

    Google Scholar 

  10. Gutierrez-Diez, J. M.: Una caracterización dual de optimalidad para optimización convex a. Trab. Est. Inv. Oper. 35 (1984), 293–304.

    Article  Google Scholar 

  11. Gyurkovics, E.: Holder condition for the minimum time function of linear systems. System Modelling and Optimization, ed. by P. Thoft-Christensen, Springer-Verlag (1984), 383–392.

    Google Scholar 

  12. Hájek, O.: Geometric theory of time optimal control. SIAM J. Control Optim. 9 (1971), 339–350.

    Article  Google Scholar 

  13. Hájek, O.: On differentiability of the minimal time function. Funkcialaj Ekvacioj 20 (1977), 97–114.

    Google Scholar 

  14. Hermes, H. and la Salle, J. P.: Functional analysis and time optimal control. Academic Press (1969).

    Google Scholar 

  15. Hiriart-Urruty, J. B.: Extension of Lipschitz functions. J. Math. Anal. Appl. 77 (1980), 539–554.

    Article  Google Scholar 

  16. Hiriart-Urruty, J. B.: Lipschitz r-continuity of the approximate subdifferential of a convex function. Math. Scand. 47 (1980), 123–134.

    Google Scholar 

  17. Laurent, P. J.: Approximation et optimisation. Hermann (1972).

    Google Scholar 

  18. Lee, E. B. and Markus, L.: Foundations of optimal control theory. John Wiley (1967).

    Google Scholar 

  19. Mangasarian, O. L.: Non linear programming. Mc Graw Hill (1969).

    Google Scholar 

  20. Martínez-Legaz, J. E.: Conjugación asociada a un grafo. Actas IX Jornadas Matemáticas Hispano-Lusas, Vol. II, Universidad de Salamanca (1982), 837–839.

    Google Scholar 

  21. Martínez-Legaz, J. E.: Level sets and the minimal time function of linear control processes. Numer. Funct. Anal. Optimiz. (to appear).

    Google Scholar 

  22. Mc Shane, E. J.: Extension of range of functions. Bull. Amer. Math. Soc. 40 (1934), 837–842.

    Article  Google Scholar 

  23. Mignanego, F. and Pieri, G.: On a generalized Bellman equation for the optimal- time problem. Systems & Control Letters 3 (1983), 235–241.

    Article  Google Scholar 

  24. Moreau, J. J.: Inf-convolution, sous-add i ti vi té, convexité des fontions numériques. J. Math, pures et appl. 49 (1970), 109–154.

    Google Scholar 

  25. Penot, J. P. and Voile, M.: Another duality scheme for quasiconvex problems. Paper presented at the 4th French-German Conference on Optimization (1986).

    Google Scholar 

  26. Plastria, F.: Lower subdifferentiable functions and their minimization by cutting planes. J. Optim. Theory Appl. 46 (1985), 37–53.

    Article  Google Scholar 

  27. Rockafellar, R. T.: Convex analysis. Princeton University Press (1970).

    Google Scholar 

  28. Rockafellar, R. T.: Augmented Lagrange multiplier functions and duality in non- convex programming. SIAM J. Control Optim. 12 (1974), 268–285.

    Article  Google Scholar 

  29. Singer, I.: The lower semi-continuous quasi-convex hull as a normalized second conjugate. Nonlinear Anal. Theory, Meth. Appl. 7 (1983), 1115–1121.

    Article  Google Scholar 

  30. Singer, I.: Surrogate conjugate functionals and surrogate convexity. Applicable Anal. 16 (1983), 291–327.

    Article  Google Scholar 

  31. Singer, I.: Generalized convexity, functional hulls and applications to conjugate duality in optimization. Selected Topics in Operations Research and Mathematical Economics, ed. by G. Hammer and D. Pallaschke, Springer-Verlag (1984), 80–97.

    Google Scholar 

  32. Singer, I.: Some relations between dualities, polarities, coupling functionals and conjugations. J. Math. Anal. Appl. 115 (1986), 1–33.

    Article  Google Scholar 

  33. Voile, M.: Conjugaison par tranches. Annali Mat. Pura Applicata 139 (1985), 279–311.

    Article  Google Scholar 

  34. Whitney, H.: Analytic extensions of differentiate functions defined in closed sets. Trans. Math. Soc. 36 (1934), 63–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Martinez-Legaz, J.E. (1988). On lower subdifferentiable functions. In: Hoffmann, KH., Zowe, J., Hiriart-Urruty, JB., Lemarechal, C. (eds) Trends in Mathematical Optimization. International Series of Numerical Mathematics/Internationale Schriftenreihe zur Numerischen Mathematik/Série internationale d’Analyse numérique, vol 84. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9297-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9297-1_14

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9984-0

  • Online ISBN: 978-3-0348-9297-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics