Skip to main content

Mechanisms of receptor-mediated transmembrane signalling

  • Chapter
Development of Hormone Receptors

Part of the book series: EXS 53: Experientia Supplementum ((EXS,volume 53))

  • 50 Accesses

Abstract

Fundamental to the successful function of any multicellular organism is an efficient communication system that can convey information from one cell to another. Although the overall function of the cell membrane is to maintain an effective barrier between the intracellular and extracellular milieu, highly specialized membrane structures (e.g. ion channels, nutrient transporters, histocompatability determinants) can be singled out as playing particularly pivotal roles in terms of selectively transmitting information from the external to the internal cell environment (and in some cases, vice versa). Over the past decade there has been much progress in the biochemical and pharmacologic characterization of the membrane constituents that participate in the transmembrane signalling process. This chapter will deal in general with selected aspects of transmembrane signalling and will focus in particular on the plasma membrane- localized processes used by pharmacologic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berrige, M. J., Inositol triphosphate and diacylglycerol as second messengers. Biochem. J. 220 (1984) 345–360.

    Google Scholar 

  2. Boeynaems, J. M., and Dumont, J. E., The two-step model of ligand-receptor interaction. Molec. cell. Endocr. 7 (1977) 33–47.

    Google Scholar 

  3. Brown, M. S., and Goldstein, J. L., Lipoprotein receptors in the liver. Control signals for plasma cholesterol traffic. J. clin. Invest. 72 (1983) 743–747.

    Article  Google Scholar 

  4. Brown, M. S., Kovanen, P. T., and Goldstein, J. L., Regulation of plasma cholesterol by lipoprotein receptors. Science 212 (1981) 628–635.

    Article  Google Scholar 

  5. Carpenter, G., Epidermal growth factor, in: Tissue Growth Factors, Handbook of Experimental Pharmacology, pp. 89–132. Ed. R. Baserga. Springer Verlag, New York 1981.

    Google Scholar 

  6. Carpenter, G., and Cohen, S., Epidermal growth factor. A. Rev. Biochem. 48 (1979) 193–216.

    Article  Google Scholar 

  7. Catterall, W. A., The emerging molecular view of the sodium channel. Trends Neurosci. 5 (1982) 303–306.

    Article  Google Scholar 

  8. Conn, P. M., Rogers, D. C., Stewart, J. M., Neidel, J., and Sheffield, T., Conversion of a gonadotropin-releasing hormone antagonist to an agonist. Nature, Lond. 296 (1982) 653–655.

    Article  Google Scholar 

  9. Conti-Tronconi, B.M., and Raftery, M.A., The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties. A. Rev. Biochem. 51 (1982) 491–530.

    Article  Google Scholar 

  10. Cuatrecasas, P., Membrane receptors. A. Rev. Biochem. 43 (1974) 169–214.

    Article  Google Scholar 

  11. Cuatrecasas, P., and Hollenberg, M.D., Membrane receptors and hormone action. Adv. Prot. Chem. 30 (1976) 251–451.

    Article  Google Scholar 

  12. DeHaen, C., The non-stoichiometric floating receptor model for hormone-sensitive adenylate cyclase. J. theor. Biol. 58 (1976) 383–400.

    Article  Google Scholar 

  13. Ebina, Y., Ellis, L., Jarnagin, K., Edery, M., Graf, L., Clauser, E., Ou, J.-H., Maslarz, F., Kan, Y.W., Goldfine, I.D., Roth, R. A., and Rutter, W.J., The human insulin receptor cDNA: The structural basis for hormone-activated transmembrane signalling. Cell 40 (1985) 747–758.

    Article  Google Scholar 

  14. Frye, L.D., and Edidin, M., The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J. Cell Sci. 7 (1970) 319–335.

    Google Scholar 

  15. Gilman, A.G., Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J. clin. Invest. 73 (1984) 1–4.

    Article  Google Scholar 

  16. Gregory, H., Taylor, C.L., and Hopkins, C.R., Leuteinizing hormone release from dissociated pituitary cells by dimerization of occupied LHRH receptors. Nature 300 (1982) 269–271.

    Article  Google Scholar 

  17. Hollenberg, M. D., Membrane receptors and hormone action. Pharmac. Rev. 30 (1979) 393–110.

    Google Scholar 

  18. Hollenberg, M.D., Epidermal growth factor-urogastrone, a polypeptide acquiring hormonal status. Vit. Horm. 37 (1979) 69–110.

    Article  Google Scholar 

  19. Hollenberg, M. D., Receptor-mediated phosphorylation reactions. Trends Pharmac. Sci. 3 (1982) 271–273.

    Google Scholar 

  20. Hopkins, C.R., Semoff, S., and Gregory, H., Regulation of gonadotropin secretion to the anterior pituitary. Phil. Trans R. Soc. B296 (1981) 73–81.

    Google Scholar 

  21. Jacobs, S., Chang, K.-J., and Cuatrecasas, P., Antibodies to purified insulin receptor have insulin-like activity. Science 200 (1978) 1283–1284.

    Article  Google Scholar 

  22. Jacobs, S., and Cuatrecasas, P., The mobile receptor hypothesis and polypeptide hormone action, in: Polypeptide Hormone Receptors, pp. 39–60. Ed. B. Posner. Marcel Dekker, Inc., New York 1985.

    Google Scholar 

  23. Jarett, L., and Seals, J. R., Pyruvate dehydrogenase activation in adipocyte mitochondria by an insulin-generated mediator from muscle. Science 206 (1979) 1407–1408.

    Article  Google Scholar 

  24. Kahn, C.R., Baird, K.L., Flier, J.S., Grunfeld, C., Harmon, J.T., Harrison, L.C., Karlsson, F.A., Kasuga, M., King, G.L., Lang, U.C., Podskalny, J.M., and Van Obberghen, E., Insulin receptor, receptor antibodies and the mechanism of insulin action. Recent Prog. Horm. Res. 37 (1981)477–538.

    Google Scholar 

  25. Kaplan, J., Polypeptide-binding membrane receptor: Analysis and classification. Science 212 (1981) 14–20.

    Article  Google Scholar 

  26. Kasuga, M., Zick, Y., Blithe, D.L., Grettaz, M., and Kahn, C.R., Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature, Lond. 298 (1982) 667–669.

    Article  Google Scholar 

  27. King, A. C., and Cuatrecasas, P., Peptide hormone-induced receptor mobility, aggregation and internalization. New Engl. J. Med. 305 (1981) 77–88.

    Google Scholar 

  28. Larner, J., Galasko, G., Cheng, K., DePaoli-Roach, A. A., Huang, L., Daggy, P., and Kellogg, J., Generation by insulin of a chemical mediator that controls phosphorylation-dephosphorylation. Science 206 (1979) 1408–1410.

    Article  Google Scholar 

  29. Lefkowitz, R.J., Stadel, J.M., and Caron, M.G., Adenylate cyclase-coupled beta-adrenergic receptors: Structure and mechanisms of activation and desensitization. A. Rev. Biochem. 52 (1983) 159–186.

    Article  Google Scholar 

  30. Marx, J. L., Cloning the acetylcholine receptor genes. Science 219 (1983) 1055–1056.

    Article  Google Scholar 

  31. Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K.-I., Fujita, Y., Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M., and Numa, S., Location of functional regions of acetylcholine receptor -subunit by site-directed mutagenesis. Nature 575 (1985) 364–369.

    Article  Google Scholar 

  32. Nexo, E., and Hollenberg, M.D., Characterization of the particulate and soluble acceptor for transcobalamin II from human placenta and rabbit liver. Biochim. biophys. Acta 628 (1980) 190–200.

    Google Scholar 

  33. Nishizuka, Y., The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308 (1984) 693–698.

    Article  Google Scholar 

  34. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., and Numa, S., Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302 (1983) 528–532.

    Article  Google Scholar 

  35. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kanagawa, K., Matsuo, H., Raftery, M.A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312 (1984) 121–127.

    Article  Google Scholar 

  36. Northup, J. K., Overview of the guanine nucleotide regulatory protein systems, Ns and Ni, which regulate adenylate cyclase activity in plasma membranes, in: Molecular Mechanisms of Transmembrane Signalling, pp. 91–116. Eds P. Cohen and M. Houslay. Elsevier Science Publishers B.V. ( Biomedical Division ), Amsterdam 1985.

    Google Scholar 

  37. Pastan, I. H., and Willingham, M. C., Journey to the center of the cell: Role of the receptosome. Science 2 /4 (1981) 504–509.

    Article  Google Scholar 

  38. Posner, B.I., Khan, M.N., and Bergeron, J.J.M., Receptor-mediated uptake of peptide hormones and other ligands, in: Polypeptide hormone receptors, pp. 61–90. Ed. B. I. Posner. Marcel Dekker, Inc., New York 1985.

    Google Scholar 

  39. Raff, M., Self regulation of membrane receptors. Nature 259 (1976) 265–266.

    Article  Google Scholar 

  40. Rodbell, M., The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284 (1980) 17–22.

    Article  Google Scholar 

  41. Rosen, O.M., Herrera, R., Olowe, Y., Petruzzelli, L.M., and Cobb, M.H., Phosphorylation activates the insulin receptor tyrosine protein kinase. Proc. natn. Acad. Sci. USA 80 (1983) 3237–3240.

    Article  Google Scholar 

  42. Roth, R. A., and Cassell, D. J., Evidence that the insulin receptor is a protein kinase. Science 219 (1983) 299–301.

    Article  Google Scholar 

  43. Roth, R. A., Cassell, D. J., Wong, K. Y., Maddux, B. A., and Goldfine, I. D., Monoclonal antibodies to the human insulin receptor block insulin binding and inhibit insulin action. Proc. natn. Acad. Sci. USA 79 (1982) 7312–7316.

    Article  Google Scholar 

  44. Saltiel, A. R., Siegel, M. I., Jacobs, S., and Cuatrecasas, P., Putative mediators of insulin action: Regulation of pyruvate dehydrogenase and adenylate cyclase activities. Proc. natn. Acad. Sci. USA 79 (1982) 3513–3517.

    Article  Google Scholar 

  45. Schlessinger, J., Shechter, Y., Cuatrecasas, P., Willingham, M.C., and Pastan, I., Quantitative determination of the lateral diffusion coefficients of the hormone-receptor complexes of insulin and epidermal growth factor on the plasma membrane of cultured fibroblasts. Proc. natn. Acad. Sci. USA 75 (1978) 5353–5357.

    Article  Google Scholar 

  46. Schlessinger, J., Schreiber, A. B., Levi, A., Lax, I., Libermann, T. A., and Yarden, Y., Regulations of cell proliferation by epidermal growth factor. CRC Crit. Rev. Biochem. 14 (1983) 93–112.

    Article  Google Scholar 

  47. Schreiber, A.B., Libermann, T.A., Lax, I., Yarden, Y., and Schlessinger, J., Biological role of epidermal growth factor-receptor clustering. J. biol. Chem. 258 (1983) 846–853.

    Google Scholar 

  48. Seals, J.R., and Czech, M.P., Evidence that insulin activates an intrinsic plasma membrane protease in generating a secondary chemical mediator. J. biol. Chem. 255 (1980) 6529–6531.

    Google Scholar 

  49. Seligman, P. A., and Allan, R. H., Characterization of the receptor for transcobalamin II isolated from human placenta. J. biol. Chem. 253 (1978) 1766–1772.

    Google Scholar 

  50. Shechter, Y., Hernaez, L., Schlessinger, J., and Cuatrecasas, P., Local aggregation of hormone-receptor complexes is required for activation by epidermal growth factor. Nature, Lond. 278 (1979) 835–838.

    Article  Google Scholar 

  51. Smith, R.L., and Jarett, L., Tissue specific variations in insulin receptor dynamics: a high resolution ultrastructural and biochemical approach, in: Insulin: Its Receptor and Diabetes, pp. 105–139. Ed. M. D. Hollenberg. Marcel Dekker, Inc., New York 1985.

    Google Scholar 

  52. Sokolovsky, M., Muscarinic receptors in the central nervous system. Int. Rev. Neurobiol. 25 (1984) 139–183.

    Article  Google Scholar 

  53. Stevens, C.F., Molecular tinkerings that tailor the acetylcholine receptor. Nature 313 (1985) 350–351.

    Article  Google Scholar 

  54. Taylor, P., Brown, R.D., and Johnson, D.A., The linkage between ligand occupation and response of the nicotinic acetylcholine receptor, in: Current topics in Membranes and Transport, vol. 18, pp. 407–444. Ed. A. Kleinzeller. Academic Press, New York 1983.

    Google Scholar 

  55. Ullrich, A., Coussens, L., Hayflick, J. S., Dull, T. J., Gray, A., Tam. A. W., Lee, J., Yarden, Y., Libermann, T. A., Schlessinger, J., Downward, J., Mayes, E. L. V., Whittle, N., Waterfield, M. D., and Seeburg, P.H., Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309 (1984) 418–25.

    Article  Google Scholar 

  56. Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A. Seeburg, P.H., Grunfeld, C., Rosen, O. M., and Ramachandran, J., Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313 (1985) 756–761.

    Article  Google Scholar 

  57. Van Obberghen, E., and Kowalski, A., Phosphorylation of the hepatic insulin receptor. Stimulating effect of insulin on intact cells and in a cell-free system. FEBS Lett. 143 (1982) 179–182.

    Article  Google Scholar 

  58. Zierler, K., Membrane polarization and insulin action, in: Insulin: Its Receptor and Diabetes, pp. 141 - 179. Ed. M. D. Hollenberg. Marcel Dekker, Inc., New York 1985.

    Google Scholar 

  59. Zierler, K., and Rogus, E. M., Effects of peptide hormones and adrenergic agents on membrane potentials of target cells. Fedn Proc. 40 (1981) 121–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Birkhäuser Verlag

About this chapter

Cite this chapter

Hollenberg, M.D. (1987). Mechanisms of receptor-mediated transmembrane signalling. In: Csaba, G. (eds) Development of Hormone Receptors. EXS 53: Experientia Supplementum, vol 53. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9291-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9291-9_2

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9982-6

  • Online ISBN: 978-3-0348-9291-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics