Skip to main content

Why do hormone receptors arise? An introduction

  • Chapter
Development of Hormone Receptors

Part of the book series: EXS 53: Experientia Supplementum ((EXS,volume 53))

Abstract

The hormone is a signal molecule which carries a given type of information. This information is received by a cellular signal receiver (receptor) structure, which mediates it into the cell body. Thus the information embodied by the signal (hormone) molecule acquires a ‘sense’, which is expressed as a cellular response. In this interpretation the hormone and its receptor form a unity, since neither of them has a ‘sense’ in itself. The hormones or, more precisely, the cells containing them, are the foundation stones of the hormonal system. It follows that the existence of a hormonal system presupposes the existence and, naturally, the interaction, of hormones and receptors. However, the fact that the endocrine system is an issue of evolution has prompted us to revise the concept that the hormone and its receptor could have been preexisting structures: the interaction of its corner-stones is necessarily a result of evolution itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrington, E. J. W., Evolutionary aspects of hormone structure and functions, in: Comparative Endocrinology, pp. 381–396. Eds J. P. Gaillard and H. Boer. Elsevier, North Holland Amsterdam 1978.

    Google Scholar 

  2. Csaba, G., Phylogeny and ontogeny of hormone receptors: the selection theory of receptor formation and hormonal imprinting. Biol. Rev. 55 (1980) 47–63.

    Article  Google Scholar 

  3. Csaba, G., Ontogeny and phylogeny of hormone receptors. Karger, Basel/New York 1981.

    Google Scholar 

  4. Csaba, G. Newer theoretical considerations of the phylo- and ontogenetic development of hormone receptors. Acta biol. hung. 31 (1980) 465–474.

    Google Scholar 

  5. Csaba, G., The present state in the phylogeny and ontogeny of hormone receptors. Horm. Metab. Res. 16 (1984) 329–335.

    Article  Google Scholar 

  6. Csaba, G., The development of recognitions systems in the living world. Karger Gazette 46–47

    Google Scholar 

  7. Csaba, G., The unicellular Tetrahymena as model cell for receptor research, Int. Rev. Cytol. 95 (1985) 327–377.

    Article  Google Scholar 

  8. Csaba, G., Receptor ontogeny and hormonal imprinting, Experientia 42 (1986) 750–759.

    Article  Google Scholar 

  9. Csaba, G., Bierbauer, J., and Fehér, Z., Effect of melatonin and its precursors on the melanocytes of planaria (Dugesia lugubris) Comp. Biochem. Physiol. 67C (1980) 207–209.

    Article  Google Scholar 

  10. Csaba, G., and Nagy, S. U., Effect of vertebrate hormones on the cyclic AMP level in Tetrahymena. Acta biol. med. germ. 35 (1976) 1399–1401.

    Google Scholar 

  11. Csaba, G., and Németh, G., Effect of hormones and their precursors on protozoa - the selective responsiveness of Tetrahymena. Comp. Biochem. Physiol. 65B (1980) 387–390.

    Article  Google Scholar 

  12. Csaba, G., Németh, G., Juvancz, I., and Vargha, P., Involvement of selection and amplification mechanisms in hormone receptor development in a unicellular model system. BioSyst. 15 (1982) 59–63.

    Article  Google Scholar 

  13. Csaba, G., Németh, G., and Vargha, P., Development and persistence of receptor ‘memory’ in a unicellular model system. Expl Cell. Biol. 50 (1982) 291–294.

    Google Scholar 

  14. Damsky, C. H., Knudsen, K. A., and Clayton, H. B., Integral membrane glycoproteins in cell-cell and cell-substance adhesion, in: The biology of glycoproteins, pp. 1–64. Ed. R.J. Ivatt. Plenum Press, New York/London 1984.

    Google Scholar 

  15. Diez, A., Sancho, M. J., Egana, M., Trueba, M., Marino, A., and Macarella, J. M., An interaction of testosterone with cell membranes. Horm. Metab. Res. 16 (1984) 415–411.

    Article  Google Scholar 

  16. Fristrom, J. W., and Spieth, Ph., in: Principles of Genetics, pp. 500–502. Blackwell, Oxford 1980.

    Google Scholar 

  17. Gabor, G., and Bennett, R. M., Biotin labelled DNA: a novel approach for the recognition of a DNA binding site on cell membranes. Biochem. biophys. Res. Commun. 122 (1984) 1034–1039.

    Google Scholar 

  18. Ginsberg, B.H., Kahn, C.R., and Roth, J., The insulin receptor of the turkey erythrocyte: similarity to mammalian insulin receptors. Endocrinology 100 (1977) 520–525.

    Article  Google Scholar 

  19. Karyia, K., Saito, K., and Iwata, H., Adrenergic mechanism in Tetrahymena III. cAMP and cell proliferation. Jap. J. Pharmac. 24 (1974) 129–134.

    Article  Google Scholar 

  20. Kassis, S., and Kindler, S.H., Dispersion of epinephrine sensitive and insensitive adenylate cyclase from the ciliate Tetrahymena pyriformis. Biochim. biophys. Acta 391 (1975) 513.

    Google Scholar 

  21. Koch, A.S., Fehér, J., and Lukovics, I., Single model of dynamic receptor pattern generation. Biol. Cybernet. 32 (1979) 125–138.

    Article  Google Scholar 

  22. Kudo, S., and Nozawa, Y., Cyclic adenosine 3’, 5’-monophasphate binding protein in Tetrahymena: properties and subcellular distribution. J. Protozool. 39 (1983) 30–36.

    Google Scholar 

  23. Kuno, T., Yoshida, C., Tonaka, R., Kasai, K., and Nozawa, Y.,Immunocytochemical localization of cyclic AMP in Tetrahymena. Experientia 37 (1981) 411–413.

    Article  Google Scholar 

  24. Leder, P., The genetics of antibody diversity. Scient. Am. 246 (1982) 72–83.

    Google Scholar 

  25. Levey, G.S., and Robinson, A.G., Introduction to the general principles of hormone-receptor interaction. Metabolism 31 (1982) 639–645.

    Article  Google Scholar 

  26. McKerns, K.W., Regulation of gene expression in the nucleus by gonadotropins, in: Structure and function of the gonadotropins, pp. 310–338. Ed. K.W. McKerns. Plenum Press, New York 1978.

    Google Scholar 

  27. Muggeo, M., Ginsberg, B. H., Roth, J., Neville, G. M., Meyts, P. de, and Kahn, C. R., The insulin receptor in vertebrates is functionally more conserved during evolution than the insulin itself. Endocrinology 104 (1979) 1313–1402.

    Article  Google Scholar 

  28. Muggeo, M., Obberghen, E. van, Kahn, C. R., Roth, J., Ginsberg, B., Meyts, P. de, Emdin, S. O., and Falkmer, S., The insulin receptor and insulin of the atlantic hagfish. Diabetes 28 (1979) 175–181.

    Google Scholar 

  29. Nagao, S., Suzuki, Y., Watanabe, Y., and Nozawa, Y., Activation by a calcium-binding protein of guanylate-cyclase in Tetrahymena pyriformis. Biochem. biophys. Res. Commun. 90 (1979) 261–268.

    Google Scholar 

  30. Rao, C. V., and Chegini, N., Nuclear receptors for gonadotropins and prostaglandins, in: Evolution of hormone receptor systems, pp. 413–423. Alan. R. Liss, New York 1983.

    Google Scholar 

  31. Reading, C.L., Carbohydrate structure, biological recognition and immune function, in: The biology of glycoproteins, pp. 235–321. Ed. R.J. Ivatt. Plenum Press, New York/London 1984.

    Google Scholar 

  32. Reid, B. L., and Charlson, A. J., Cytoplasmic and cell surface deoxyribonucleic acid with consideration of their origin. Int. Rev. Cytol. 60 (1979) 27–52.

    Article  Google Scholar 

  33. Satir, B. H., Garofalo, R. S., Gillingan, D. M., and Maihle, N. J., Possible functions of calmodulin in protozoa. Ann. N.Y. Acad. Sei. USA 356 (1980) 83–93.

    Article  Google Scholar 

  34. Steinmann, R. M., Melmann, I. S., Muller, W. A., and Cohn, A., Endocytosis and the recycling of plasma membrane. J. Cell Biol. 96 (1983) 1–27.

    Article  Google Scholar 

  35. Szego, C. M., Parallels in the modes of action of peptide and steroid hormones: membrane effects and cellular entry, in: Structure and function of the gonadotropins, pp. 471–472. Ed. R. W. Mc Kerns. Plenum Press, New York/London 1978.

    Google Scholar 

  36. Szego, C.M., and Pietras, R.J., Lysosome function in cellular activation: propagation of the actions of hormones and other effectors. Int. Rev. Cytol. 88 (1984) 1–302.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Birkhäuser Verlag

About this chapter

Cite this chapter

Csaba, G. (1987). Why do hormone receptors arise? An introduction. In: Csaba, G. (eds) Development of Hormone Receptors. EXS 53: Experientia Supplementum, vol 53. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9291-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9291-9_1

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9982-6

  • Online ISBN: 978-3-0348-9291-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics