Toeplitz Operators on Multiply Connected Domains and Theta Functions

  • Kevin F. Clancey
Part of the Operator Theory: Advances and Applications book series (OT, volume 35)


The Fredholm spectral picture of Toeplitz operators acting on the least harmonic majorant Hardy space of a multiply connected planar domain as described by M.B. Abrahamse is refined. This is accomplished by viewing the planar domain as a domain on its double and applying the methods of Hilbert barrier problems associated with divisors as developed by R.N. Abdulaev, N. Koppelman, Yu.L. Rodin and E.I. Zverovich. In essence the results on barrier problems are obtained by reducing to the classical Riemann-Roch Theorem and the Riemann Singularity Theorem for theta functions. The barrier problems encountered are associated with the critical Green’s divisor and the results are considerably enhanced by the work on theta functions by J.D. Fay.


Riemann Surface Meromorphic Function Toeplitz Operator Theta Function Harmonic Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abdulaev, R.N., On the solvability conditions of the Riemann homogeneous problem on closed Riemann surfaces, Dokl. Adad. Nauk SSSR 152 (1963), 1279–1281.Google Scholar
  2. [2]
    Abdulaev, R.N., The discontinuous Riemann-Hilbert problem for analytic functions on a Riemann surface, Dokl. Adad. Nauk. SSSR 172 (1967), 751–754Google Scholar
  3. [2]a
    Abdulaev, R.N., Soviet Math. Dokl. 8 (1967), 144–148.Google Scholar
  4. [3]
    Abrahamse, M.B., Toeplitz operators in multiply connected regions, Bull. Amer. Math. Soc., 77 (1971), 449–454.CrossRefGoogle Scholar
  5. [4]
    Abrahamse, M.B., Toeplitz operators in multiply connected regions, Amer. Jour. Math., 96 (1974), 261–297.CrossRefGoogle Scholar
  6. [5]
    Behnke, H. and Stein, K., Entwicklung analytischer Functionen auf Riemanschen Flachen, Mat. Ann., 120 (1949), 430–461.CrossRefGoogle Scholar
  7. [6]
    Clancey, K. and Gohberg, I., Local and global factorizations of matrix valued functions, Trans. Amer. Math. Soc, 232 (1977), 155–167.CrossRefGoogle Scholar
  8. [7]
    Coburn, L.A., Weyl’s theorem for non-normal operators, Michigan Math. J. 13 (1966), 285–286.CrossRefGoogle Scholar
  9. [8]
    Douglas, R.G., Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.Google Scholar
  10. [9]
    Douglas, R.G., Banach Algebra Techniques in the theory of Toeplitz Operators, C.B.M.S. Regional Conference Series in Mathematics, No. 15, 1972.Google Scholar
  11. [10]
    Farkas, H.M. and Kra, I., Riemann Surfaces, Springer-Verlag, New York, 1980.Google Scholar
  12. [11]
    Fay, J.D., Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics No. 352, Springer-Verlag, New York, 1973.Google Scholar
  13. [12]
    Fisher, S.D., Function Theory on Planar Domains: A Second Course in Complex Analysis, Wiley, New York, 1983.Google Scholar
  14. [13]
    Gohberg, I. and Krupnik, N.Ya., Introduction to the Theory of One-Dimensional Singular Integral Operators, German transi., Birkhauser Verlag, Basel, 1979.Google Scholar
  15. [14]
    Heins, M., Hardy Classes on Riemann Surfaces, Lecture Notes in Mathematics, No. 98, Springer-Verlag, New York, 1969.Google Scholar
  16. [15]
    Heins, M., Symmetric Riemann surfaces and boundary problems, Proc. L.M.S. 3rd ser. 14a (1965), 129–143.CrossRefGoogle Scholar
  17. [16]
    Koppelman, W., The Riemann-Hilbert problem for finite Riemann surfaces, Comm. Pure App. Math. XII (1959), 13–35.CrossRefGoogle Scholar
  18. [17]
    Koppelman, W., Singular integral equations, boundary value problems and the Riemann-Roch theorem, Jour. of Math. and Mechanics, 10 (1961), 247–277.Google Scholar
  19. [18]
    Lewittes, T., Riemann surfaces and the theta functions, Acta Math., 111 (1964), 37–61.CrossRefGoogle Scholar
  20. [19]
    Mumford, D., Tata Lectures on Theta I, II, Birkhauser Verlag, Basel, 1983.Google Scholar
  21. [20]
    Muskhelishvili, N.I., Singular Integral Equations, Boundary Problems of Function Theory and their Applications to Mathematical Physics, 2nd ed., Fizmatgiz, Moscow, 1962Google Scholar
  22. [20]a.
    Muskhelishvili, N.I., English transi. of 1st ed., Noordhoff, Groningen, 1953.Google Scholar
  23. [21]
    Nehari, Z., Conformai Mapping, McGraw-Hill, New York, 1952.Google Scholar
  24. [22]
    Rauch, H.E. and Farkas, H.M., Theta Functions with Applications to Riemann Surfaces, Williams and Wilkins; Baltimore, Maryland, 1973.Google Scholar
  25. [23]
    Riemann, B., Collected Works, Dover, 1953.Google Scholar
  26. [24]
    Rodin, Yu.L., On the solubility conditions for Riemann’s and Hilbert’s boundary value problem in Riemann surfaces, Dokl. Adad. Nauk SSSR 129 (1959), 1234–1237.Google Scholar
  27. [25]
    Röhrl, H., Ω-degenerate singular integral equations and holomorphic affine bundles over compact Riemann surfaces, I., Comment. Math. Helv. 38 (1963), 84–120.CrossRefGoogle Scholar
  28. [26]
    Sarason, D., The Hp spaces of an annulus, Memoirs Amer. Math. Soc. 56 (1965).Google Scholar
  29. [27]
    Schiffer, M. and Spencer, D.C., Functionals of Finite Riemann Surfaces, Princeton Univ. Press, Princeton, N.J., 1954.Google Scholar
  30. [28]
    Schottky, F., Uber die camforme abbildung mehrfach zusammehänzenduebener Flachen, Crelles Journal 83 (1977), 300–351.Google Scholar
  31. [29]
    Springer, G., Introduction to Riemann Surfaces, Chelsea, New York, 1981.Google Scholar
  32. [30]
    Tretze, H., Fabersche Entiwicklungen auf geschlossenen Riemanschen Flächen, J. Reine Angew. Math. 190 (1952), 22–33.Google Scholar
  33. [31]
    Tsuji, M., Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.Google Scholar
  34. [32]
    Vaccaro, M., Sui funzionali analitici lineari definiti per le funzioni analitici uniformi sopra una curva algebrica, Ann. Scuola Norm. Sup. Pisa V., series 3a (1951), 39–59.Google Scholar
  35. [33]
    Zverovich, E.I., Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces, Russian Mathematical Surveys, 26 (1971), 117–192.CrossRefGoogle Scholar
  36. [34]
    Zverovich, E.I., The Behnke-Stein kernel and a solution in closed form of Riemann’s boundary value problem on the torus, Dokl. Adad. Nauk SSSR 188 (1969), 27–30Google Scholar
  37. [34]a
    Zverovich, E.I., Soviet Math. Doklady 10 (1969), 1064–1068.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1988

Authors and Affiliations

  • Kevin F. Clancey
    • 1
  1. 1.Department of MathematicsUniversity of GeorgiaAthensUSA

Personalised recommendations