Skip to main content

Modeling the Ionosphere Wind Dynamo: A Review

  • Chapter

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

This paper reviews the current status of research concerned with modeling the ionospheric wind dynamo. Simulation models have been reasonably successful in reproducing the types of magnetic perturbations that are produced by the dynamo. Ionospheric electric fields are less well simulated, particularly at night. The primary areas of research needed to improve our ability to simulate realistically the ionospheric wind dynamo are in the modeling of nighttime conditions, hemispherical asymmetries of thermospheric tides, and mutual dynamic coupling among winds, conductivities, electric fields, and electric currents.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasofu, S.-I., and De Witt, R. N. (1965), Dynamo Action in the Ionosphere and Motions of the Magnetospheric Plasma, 3. The Pedersen Conductivity, Generalized to Take Account of Acceleration of the Neutral Gas, Planet. Space Sci. 13, 737–744.

    Google Scholar 

  • Anandarao, B. G., and Raghavarao, R. (1979), Effects of Vertical Shears in the Zonal Winds on the Electrojet, Space Res. 19, 283–286.

    Google Scholar 

  • Anandarao, B. G., and Raghavarao, R. (1987), Structural Changes in the Currents and Fields of the Equatorial Electrojet due to Zonal and Meridional Winds, J. Geophys. Res. 92, 2514–2526.

    Google Scholar 

  • Axford, W. I., and Hines, C. O. (1961), A Unifying Theory of High-Latitude Geophysical Phenomena and Geomagnetic Storms, Can. J. Phys. 39, 1433–1464.

    Google Scholar 

  • Baker, W. G. (1953), Electric Currents in the Ionosphere, II. The Atmospheric Dynamo, Phil. Trans. Roy. Soc. A246, 295–305.

    Google Scholar 

  • Baker, W. G., and Martyn, D. F. (1952), Conductivity of the Ionosphere, Nature 170, 1090–1092.

    Google Scholar 

  • Baker, W. G., and Martyn, D. F. (1953), Electric Currents in the Ionosphere, I. The Conductivity, Phil. Trans. Roy. Soc. A246, 281–294.

    Google Scholar 

  • Banks, P. M. (1972), Magnetospheric Processes and the Behaviour of the Neutral Atmosphere, Space Res. 12, 1051–1067.

    Google Scholar 

  • Baumjohann, W., Haerendel, G., and Melzner, F. (1985), Magnetospheric Convection Observed Between 0600 and 2100LT: Variations with Kp, J. Geophys. Res. 90, 393–398.

    Google Scholar 

  • Behnke, R. A., and Hagfors, T. (1974), Evidence for the Existence of Nighttime F-Region Polarization Fields at Arecibo, Radio Sci. 9, 211–216.

    Google Scholar 

  • Blanc, M. (1979), Electrodynamics of the Ionosphere from Incoherent Scatter: A Review, J. Geomag. Geoelectr. 31, 137–164.

    Google Scholar 

  • Blanc, M., and Richmond, A. D. (1980), The Ionospheric Disturbance Dynamo, J. Geophys. Res. 85, 1669–1686.

    Google Scholar 

  • Briggs, B. H. (1984), The Variability of Ionospheric Dynamo Currents, J. Atmos. Terr. Phys. 46, 419–429.

    Google Scholar 

  • Burnside, R. G., Walker, J. C. G., Behnke, R. A., and Gonzales, C. A. (1983), Polarization Electric Fields in the Nighttime F-Layer at Arecibo, J. Geophys. Res. 88, 6259–6266.

    Google Scholar 

  • Carpenter, D. L. (1978), New Whistler Evidence of a Dynamo Origin of Electric Fields in the Quiet Plasmasphere, J. Geophys. Res. 83, 1558–1564.

    Google Scholar 

  • Clauer, C. R., Mcpherron, R. L., and Kivelson, M. G. (1980), Uncertainty in Ring Current Parameters Due to the Quiet Magnetic Field Variability at Mid-Latitudes, J. Geophys. Res. 85, 633–643.

    Google Scholar 

  • Cole, K. D. (1969), Theory of Electric Currents in Ionospheric E-layers, Planet. Space Sci. 17, 1977–1992.

    Google Scholar 

  • Devasia, C. V. (1986), The Role of Local Action of Tidal Winds in the Generation of Counter Electrojet, Ann. Geophysicae 4A, 301–310.

    Google Scholar 

  • Dougherty, J. R. (1963), Some Comments on Dynamo Theory, J. Geophys. Res. 68, 2383–2384.

    Google Scholar 

  • Fambitakoye, O., Mayaud, P. N., and Richmond, A. D. (1976), Equatorial Electrojet and Regular Daily Variation S R, J. Atmos. Terr. Phys. 38, 113–121.

    Google Scholar 

  • Fejer, B. G., Larsen, M. F., and Farley, D. T. (1983), Equatorial Disturbance Dynamo Electric Fields, Geophys. Res. Letters 10, 537–540.

    Google Scholar 

  • Fejer, J. A. (1953), Semidiurnal Currents and Electron Drifts in the Ionosphere, J. Atmos. Terr. Phys. 4, 184–203.

    Google Scholar 

  • Fesen, C. G., Dickinson, R. E., and Roble, R. G. (1986), Simulation of the Thermospheric Tides at Equinox with the National Center for Atmospheric Research Thermospheric General Circulation Model, J. Geophys. Res. 91, 4471-4489.

    Google Scholar 

  • Footitt, R. J., Bailey, G. J., and Moffett, R. J. (1983), Ion Transport in the Mid-Lattitude F1-Region, Planet. Space Sci. 31, 671–687.

    Google Scholar 

  • Forbes, J. M. (1981), The Equatorial Electrojet, Rev. Geophys. Space Phys. 19, 469–504.

    Google Scholar 

  • Forbes, J. M., and Garrett, H. B. (1979), Solar Tidal Wind Structures and the E-Region Dynamo, J. Geomag. Geoelectr. 31, 173–182.

    Google Scholar 

  • Forbes, J. M., and Lindzen, R. S. (1976a), Atmospheric Solar Tides and Their Electrodynamic Effects—I. The Global Sq Current System, J. Atmos. Terr. Phys. 38, 897–910.

    Google Scholar 

  • Forbes, J. M., and Lindzen, R. S. (1976b), Atmospheric Solar Tides and Their Electrodynamic Effects—II. The Equatorial Electrojet, J. Atmos. Terr. Phys. 38, 911–920.

    Google Scholar 

  • Forbes, J. M., and Lindzen, R. S. (1977), Atmospheric Solar Tides and Their Electrodynamic Effects—III. The Polarization Electric Field, J. Atmos. Terr. Phys. 39, 1369–1377.

    Google Scholar 

  • Gagnepain, J., Crochet, M., and Richmond, A. D. (1977), Comparison of Equatorial Electrojet Models, J. Atmos. Terr. Phys. 39, 1119–1124.

    Google Scholar 

  • Hanuise, C., Mazaudier, C., Vila, P., Blanc., M., and Crochet, M. (1983), Global Dynamo Simulation of Ionospheric Currents and Their Connection with the Equatorial Electrojet and Counter Electrojet: A Case Study, J. Geophys. Res. 88, 253–270.

    Google Scholar 

  • Harper, R. M., and Walker, J. C. G. (1977), Comparison of Electrical Conductivities in the E-and F-Regions of the Nocturnal Ionosphere, Planet. Space Sci. 25, 197–199.

    Google Scholar 

  • Hays, P. B., and Roble, R. G. (1979), A Quasi-Static Model of Global Atmospheric Electricity, 1. The Lower Atmosphere, J. Geophys. Res. 84, 3291–3305.

    Google Scholar 

  • Heelis, R. A., Kendall, P. C., Moffett, R. J., Windle, D. W., and Rishbeth, H. (1974), Electrical Coupling of the E-and F-Regions and Its Effect on F-Region Drifts and Winds, Planet. Space Sci. 22, 743–756.

    Google Scholar 

  • Hirono, M. (1952), A Theory of Diurnal Magnetic Variations in Equatorial Regions and Conductivity of the Ionospheric E-region, J. Geomag. Geoelectr. 4, 7–21.

    Google Scholar 

  • Hirono, M., and Kitamura, T. (1956), A Dynamo Theory in the Ionosphere, J. Geomag. Geoelectr. 8, 9–23.

    Google Scholar 

  • Jalonen, L., Nygrén, T. Oksman, J., and Turunen, T. (1984), On the Current-Carrying Properties of Mid-latitude Type Sporadic E-layers, J. Atmos. Terr. Phys. 46, 383–387.

    Google Scholar 

  • Jones, M. N. (1974), Mathematical Theory of the Ionospheric Dynamo, Planet. Space Sci. 22, 831–831.

    Google Scholar 

  • Kato, S. (1956), Horizontal Wind Systems in the Ionospheric E-Region Deduced from the Dynamo Theory of the Geomagnetic Sq Variations—Part II. Rotating Earth, J. Geomag. Geoelectr. 8, 24–31.

    Google Scholar 

  • Kato, S. (1957), Horizontal Wind Systems in the Ionospheric E-Region Deduced from the Dynamo Theory of the Geomagnetic Sq Variation—Part IV. J. Geomag. Geoelectr. 9, 107–115.

    Google Scholar 

  • Kato, S. (1980), Dynamics of the Upper Atmosphere (Center for Academic Publications, Japan 1980) pp. 141–199.

    Google Scholar 

  • Krylov, A. L., Soboleva, T. N., Fishchuk, D. I., Tsedilina, Ye. Ye., and Shcherbakov, V. P. (1973), Structure of the Equatorial Electrojet, Geomag. Aeron. 13, 400–404.

    Google Scholar 

  • Lyons, L. R., Killeen, T. L., and Waterscheid, R. L. (1985), The Neutral Wind Flywheel as a Source of Quiet-time Polar-cap Currents, Geophys. Res. Lett. 12, 101–104.

    Google Scholar 

  • Maeda, H. (1955), Horizontal Wind Systems in the Ionospheric E-Region Deduced from the Dynamo Theory of the Geomagnetic Sq Variations—Part I. Non-rotating Earth, J. Geomag. Geoelectr. 7, 121–132.

    Google Scholar 

  • Maeda, H. (1957), Horizontal Wind Systems in the Ionospheric F-Region Deduced from the Dynamo Theory of the Geomagnetic Sq Variation—Part III. J. Geomag. Geoelectr. 9, 86–93.

    Google Scholar 

  • Maeda, H. (1966), Note on the Ionospheric Sq Deduced Winds in Summer and in Winter, J. Atmos. Sci. 23, 363–369.

    Google Scholar 

  • Maeda, H. (1974), Field-aligned Current Induced by Asymmetric Dynamo Action in the Ionosphere, J. Atmos. Terr. Phys. 36, 1395–1401.

    Google Scholar 

  • Maeda, H., and Fujiwara, M. (1967), Lunar Ionospheric Winds Deduced from the Dynamo Theory of Geomagnetic Variations, J. Atmos. Terr. Phys. 29, 917–936.

    Google Scholar 

  • Maeda, K. (1977), Conductivity and Drifts in the Ionosphere, J. Atmos. Terr. Phys. 39, 1041–1053.

    Google Scholar 

  • Makino, M., and Takeda, M. (1984), Three-dimensional Ionospheric Currents and Fields Generated by the Atmospheric Global Circuit Current, J. Atmos. Terr. Phys. 46, 199–206.

    Google Scholar 

  • Marriott, R. T., Richmond, A. D., and Venkateswaran, S. V. (1979), The Quiet-time Equatorial Electrojet and Counter-electrojet, J. Geomag. Geoelectr. 31, 311–340.

    Google Scholar 

  • Matsushita, S. (1969), Dynamo Currents, Winds, and Electric Fields, Radio Science 4, 771–780.

    Google Scholar 

  • Matsushita, S. (1977), Upper-atmospheric Tidal-inter action Effects on Geomagnetic and Ionospheric Variations—A Review, Ann. Geophys. 33, 115–126.

    Google Scholar 

  • Matuura, N. (1974), Electric Fields Deduced from the Thermospheric Model, J. Geophys. Res. 79, 4679–4689.

    Google Scholar 

  • Matveev, M. I. (1971), Conductivity and E.M.F.-Dynamo Nonuniformities: Field-aligned Currents in the Magnetosphere, Gerlands Beitr. Geophysik 80, 155–170.

    Google Scholar 

  • Mazaudier, C., Richmond, A. D., and Brinkman, D. (1987) On Thermospheric Winds Produced by Auroral Heating during Magnetic Storms and Associated Dynamo Electric Fields, Ann. Geophysicae 5A, 443–448.

    Google Scholar 

  • Möhlmann, D. (1974), Ionospheric Dynamo-electric Fields, Gerlands Beitr. Geophysik 83, 101–112.

    Google Scholar 

  • Möhlmann, D. (1976), Two Wind Systems Causing the Global Ionospheric Dynamo-electric Field, Gerlands Beitr. Geophysik 85, 343–344.

    Google Scholar 

  • Möhlmann, D. (1977), Ionospheric Electrostatic Fields, J. Atmos. Terr. Phys. 39, 1325–1332.

    Google Scholar 

  • Murata, H. (1974), An Estimation of the Electric Potential Field Generated by the Diurnal Atmospheric Tide with the First Negative Mode Excited in the Lower Ionosphere, Planet. Space Sci. 22, 569–582.

    Google Scholar 

  • Ogawa, T., and Kawamoto, H. (1982), Mid-latitude Horizontal Electric Fields in the Stratosphere During Magnetically Disturbed Periods, Planet. Space Sci. 30, 1013–1024.

    Google Scholar 

  • Peterson, W. K., Doering, J. P., Potemra, T. A., Bostrom, C. O., Brace, L. H., Heelis, R. A., and Hanson, W. B. (1977), Measurement of Magnetic Field-aligned Potential Differences Using High Resolution Conjugate Photoelectron Energy Spectra, Geophys. Res. Letters 4, 373–376.

    Google Scholar 

  • Piddington, J. H. (1954), The Motion of Ionized Gas in Combined Magnetic, Electric, and Mechanical Fields of Force, Mon. Not. R. Astron. Soc. 114, 651–663.

    Google Scholar 

  • Rash, J. P. S., Hansen, H. J., and Scourfield, M. W. J. (1986), Electric Field Sources in the Quiet Plasmasphere from Whistler Observations, J. Atmos. Terr. Phys. 48, 399–414.

    Google Scholar 

  • Reddy, C. A., and Devasia, D. V. (1981), Height and Latitude Structure of Electric Fields and Currents due to Local East-West Winds in the Equatorial Electrojet, J. Geophys. Res. 86, 5751–5767.

    Google Scholar 

  • Richmond, A. D. (1973a), Equatorial Electrojet—Part I. Development of a Model Including Winds and Instabilities, J. Atmos. Terr. Phys. 35, 1082–1103.

    Google Scholar 

  • Richmond, A. D. (1973b), Equatorial Electrojet—Part II. Use of the Model to Study the Equatorial Ionosphere, J. Atmos. Terr. Phys. 35, 1105–1118.

    Google Scholar 

  • Richmond, A. D. (1974), The Computation of Magnetic Effects of Field-aligned Magnetospheric Currents, J. Atmos. Terr. Phys. 36, 245–252.

    Google Scholar 

  • Richmond, A. D., and Matsushita, S. (1975), Thermospheric Response to a Magnetic Substorm, J. Geophys. Res. 80, 2839–2850.

    Google Scholar 

  • Richmond, A. D. (1979), Ionospheric Wind Dynamo Theory: A Review, J. Geomag. Geoelectr. 31, 297–310.

    Google Scholar 

  • Richmond, A. D., Thermospheric dynamics and electrodynamics, In Solar-Terrestrial Physics (eds. Carovillano, R. L., and Forbes, J. M.) (D. Reidel, Dordrecht 1983) pp. 523–607.

    Google Scholar 

  • Richmond, A. D., and Roble, R. G. (1987), Electrodynamic Effects of Thermospheric Winds from the NCAR Thermospheric General Circulation Model, J. Geophys. Res. 92, 12365–12376.

    Google Scholar 

  • Richmond, A. D., and Venkateswaran, S. V. (1971), Geomagnetic Crochets and Associated Ionospheric Systems, Radio Sci. 6, 139–164.

    Google Scholar 

  • Richmond, A. D., Matsushita, S., and Tarpley, J. D. (1976), On the Production Mechanism of Electric Currents and Fields in the Ionosphere, J. Geophys. Res. 81, 547–555.

    Google Scholar 

  • Rishbeth, H. (1971a), The F-Layer Dynamo, Planet. Space Sci. 19, 263–267.

    Google Scholar 

  • Rishbeth, H. (1971b), Polarization Fields Produced by Winds in the Equatorial F-Region, Planet. Space Sci. 19, 357–369.

    Google Scholar 

  • Rishbeth, H. (1983), Further Studies of Directional F-Layer Currents, Planet. Space Sci. 31, 1177–1180.

    Google Scholar 

  • Rishbeth, H., and Walker, J. C. G. (1982), Directional Currents in Nocturnal E-Region Layers, Planet. Space Sci. 30, 209–214.

    Google Scholar 

  • Roble, R. G., and Hays, P. B. (1979), A Quasi-static Model of Global Atmospheric Electricity, 2. Electrical Coupling Between the Upper and Lower Atmosphere, J. Geophys. Res. 84, 7247–7256.

    Google Scholar 

  • Schafer, K. (1978), Dynamo-electric Field-aligned Currents in the Plasmasphere, J. Atmos. Terr. Phys. 40, 755–760.

    Google Scholar 

  • Schieldge, J. P., Venkateswaran, S. V., and Richmond, A. D. (1973), The Ionospheric Dynamo and Equatorial Magnetic Variations, J. Atmos. Terr. Phys. 35, 1045–1061.

    Google Scholar 

  • Singh, A., and Cole, K. D. (1987a), A Numerical Model of the Ionospheric Dynamo—I. Formulation and Numerical Technique, J. Atmos. Terr. Phys. 49, 521–527.

    Google Scholar 

  • Singh, A., and Cole, K. D. (1987b), A Numerical Model of the Ionospheric Dynamo—II. Electrostatic Field at Equatorial and Low Latitudes, J. Atmos. Terr. Phys. 49, 529–537.

    Google Scholar 

  • Singh, A., and Cole, K. D. (1987C), A Numerical Model of the Ionospheric Dynamo—III. Electric Current at Equatorial and Low Latitudes, J. Atmos. Terr. Phys. 49, 539–547.

    Google Scholar 

  • Spiro, R. W., Wolf, R. A., and Fejer, B. G. (1988), Penetration of High-latitude-electric-field Effects to Low Latitudes during SUNDIAL 1984, Ann. Geophysicae 6, 39–50

    Google Scholar 

  • Stening, R. J. (1968), Calculation of Electric Currents in the Ionosphere by an Equivalent Circuit Method, Planet Space. Sci. 16, 717–728.

    Google Scholar 

  • Stening, R. J. (1969), An Assessment of the Contributions of Various Tidal Winds to the Sq Current System, Planet. Space Sci. 17, 889–908.

    Google Scholar 

  • Stening, R. J. (1971), Longitude and Seasonal Variations of the Sq Current System, Radio Sci. 6, 133–137.

    Google Scholar 

  • Stening, R. J. (1973), The Electrostatic Field in the Ionosphere, Planet. Space Sci. 21, 1897–1910.

    Google Scholar 

  • Stening, R. J. (1977), Field-aligned Currents Driven by the Ionospheric Dynamo, J. Atmos. Terr. Phys. 39, 933–937.

    Google Scholar 

  • Stening, R. J. (1981), A Two-layer Ionospheric Dynamo Calculation, J. Geophys. Res. 86, 3543–3550.

    Google Scholar 

  • Stening, R. J. (1985), Modeling the Equatorial Electrojet, J. Geophys. Res. 90, 1705–1719.

    Google Scholar 

  • Stening, R. J. (1986), Inter-relations Between Current and Electron Density Profiles in the Equatorial Electrojet and Effects of Neutral Density Changes, J. Atmos. Terr. Phys. 48, 163–170.

    Google Scholar 

  • Takeda, M. (1982), Three Dimensional Ionospheric Currents and Field Aligned Currents Generated by Asymmetrical Dynamo Action in the Ionospheric, J. Atmos. Terr. Phys. 44, 187–193.

    Google Scholar 

  • Takeda, M., and Araki, T. (1985), Electric Conductivity of the Ionospherie and Nocturnal Currents, J. Atmos. Terr. Phys. 47, 601–609.

    Google Scholar 

  • Takeda, M., and Maeda, H. (1980), Three-dimensional Structure of Ionospheric Currents—1. Currents Caused by Diurnal Tidal Winds, J. Geophys. Res. 85, 6895–6899.

    Google Scholar 

  • Takeda, M., and Maeda, H. (1981), Three-dimensional Structure of Ionospheric Currents—2. Currents Caused by Semidiurnal Tidal Winds, J. Geophys. Res. 86, 5861–5867.

    Google Scholar 

  • Takeda, M., and Maeda, H. (1983), F-region Dynamo in the Evening—Interpretation of Equatorial ΔD Anomaly Found by MAGSAT, J. Atmos. Terr. Phys. 45, 401–408.

    Google Scholar 

  • Takeda, M., and Yamada, Y. (1987), Simulation of Ionospheric Electric Fields and Geomagnetic Field Variation by the Ionospheric Dynamo for Different Solar Activity, Ann. Geophysicae 5A, 429–434.

    Google Scholar 

  • Takeda, M., Yamada, Y., and Araki, T. (1986), Simulation of Ionospheric Currents and Geomagnetic Field Variations of Sq for Different Solar Activity, J. Atmos. Terr. Phys. 48, 277–287.

    Google Scholar 

  • Tarpley, J. D. (1970a), The Ionospheric Wind Dynamo—I. Lunar Tide, Planet. Space Sci. 18, 1075–1090.

    Google Scholar 

  • Tarpley, J. D. (1970b), The Ionospheric Wind Dynamo—II. Solar Tides, Planet. Space Sci. 18, 1091–1103.

    Google Scholar 

  • Untiedt, J. (1967), A Model of the Equatorial Electrojet Involving Meridional Currents, J. Geophys. Res. 72, 5799–5810.

    Google Scholar 

  • Untiedt, J. (1968), Der äquatoriale Elektrojet—Stromsystem und Magnetfeld, Habilitationsschrift, Technische Hochschule Carolo-Wilhelmina zu Braunschweig.

    Google Scholar 

  • Van Sabben, D. (1962), Ionospheric Current Systems Caused by Nonperiodic Winds, J. Atmos. Terr. Phys. 24, 959–974.

    Google Scholar 

  • Van Sabben, D. (1964), North-south Asymmetry of Sq, J. Atmos. Terr. Phys. 26, 1187–1195.

    Google Scholar 

  • Van Sabben, D. (1966), Magnetospheric Currents, Associated with the N-S Asymmetry of Sq, J. Atmos. Terr. Phys. 28, 965–981.

    Google Scholar 

  • Van Sabben, D. (1968), Errata, J. Atmos. Terr. Phys. 30, 327–329.

    Google Scholar 

  • Van Sabben, D. (1969), The Computation of Magnetospheric Currents, Caused by Dynamo Action in the Ionosphere, J. Atmos. Terr. Phys. 31, 469–474.

    Google Scholar 

  • Van Sabben, D. (1970), Solstitial Sq-Currents Through the Magnetosphere, J. Atmos. Terr. Phys. 32, 1331–1336.

    Google Scholar 

  • Vasyliunas, V. M. (1972), The interrelationship of magnetospheric processes, In Earth’s Magnetospheric Processes (ed. McCormac, B. M.) (D. Reidel Pub. Co. 1972) pp. 29–38.

    Google Scholar 

  • Volland, H. (1971), A Simplified Model of the Geomagnetic Sq-Current System and the Electric Fields Within the Ionosphere, Cosmic Electrodynamics 1, 428–459.

    Google Scholar 

  • Volland, H. (1976a), Coupling Between the Neutral Wind and the Ionospheric Dynamo Current, J. Geophys. Res. 81, 1621–1628.

    Google Scholar 

  • Volland, H. (1976b), The Atmospheric Dynamo, J. Atmos. Terr. Phys. 38, 869–877.

    Google Scholar 

  • Volland, H., and Grellmann, L. (1978), A Hydromagnetic Dynamo of the Atmosphere, J. Geophys. Res. 83, 3699–3708.

    Google Scholar 

  • Wagner, C.-U., Möhlmann, D., Schäfer, K., Mishin, V. M., and Matveev, M. I. (1980), Large-scale Electric Fields and Currents and Related Geomagnetic Variations in the Quiet Plasmasphere, Space Sci. Rev. 26, 391–446.

    Google Scholar 

  • Walton, E. K., and Bowhill, S. A. (1979), Seasonal Variations in the Low Latitude Dynamo Current System Near Sunspot Maximum, J. Atmos. Terr. Phys. 41, 937–949.

    Google Scholar 

  • Wolf, R. A., Mantjoukis, G. A., and Spiro, R. W. (1986), Theoretical Comments on the Nature of the Plasmapause, Adv. Space Res. 6, 177–186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Richmond, A.D. (1989). Modeling the Ionosphere Wind Dynamo: A Review. In: Campbell, W.H. (eds) Quiet Daily Geomagnetic Fields. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9280-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9280-3_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-2338-7

  • Online ISBN: 978-3-0348-9280-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics