Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 88 Accesses

Abstract

Geomagnetically quiet day variations in the polar region are reviewed with respect to geomagnetic field variation, ionospheric plasma convection, electric field and current. Persistently existing field-aligned currents are the main source of the polar region Sq. Consequently, the morphology and variability of the polar region Sq largely depend upon both field-aligned currents and ionospheric conductivity. Since field-aligned currents are the major linkage between the ionosphere and the magnetosphere, the latter is controlled by solar wind state, in particular, the interplanetary magnetic field, the polar region Sq exhibits remarkable IMF dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasofu, S.-I., and Ahn, B. H. (1981), Distribution of the Field-aligned Currents, Ionospheric Currents, and Electric Field in the Polar Region on a Very Quiet Day and a Moderately Disturbed Day, J. Geophys. Res. 86, 753–760.

    Article  Google Scholar 

  • Akasofu, S.-I., and Chapman, S., Solar-terrestrial Physics (Oxford University Press, Oxford 1972).

    Google Scholar 

  • Akasofu, S.-I., Kamide, Y., and Kisabeth, J. (1981), Comparison of Two Modeling Methods for Three-dimensional Current System, J. Geophys. Res. 86, 3389–3396.

    Article  Google Scholar 

  • Akasofu, S.-I., Kisabeth, J., Ahn, B.-H., and Tomick, G. J. (1980), The S p q Magnetic Variation, Equivalent Current, and Field-aligned Current Distribution Obtained from the IMS Alaska Meridian Chain of Magnetometers, J. Geophys. Res. 85, 2085–2091.

    Article  Google Scholar 

  • Beuler, E., Li, C. H., and Nisbet, J. S. (1982), Relationships between Birkeland Currents, Ionospheric Currents, and Electric Fields, J. Geophys. Res. 87, 151–116.

    Article  Google Scholar 

  • Bostrom, R. (1968), Current in the Ionosphere and Magnetosphere, Ann. Geophys. 24, 681–694.

    Google Scholar 

  • Burke, W. J. (1982), Magnetosphere-ionosphere Coupling: Contributions from IMS Satellite Observations, Rev. Geophys. Space Phys. 20, 685–708.

    Article  Google Scholar 

  • Burke, W. J., Kelley, M. C., Sagalyn, R. C., Smiddy, M., and Lai, S. T. (1979), Polar Cap Electric Field Structure with Northward Interplanetary Magnetic Field, Geophys. Res. Lett. 6, 21–24.

    Article  Google Scholar 

  • Bythrow, P. F., Burke, W. J., Potemra, T. A., Zanetti, L. J., and Lui, A. T. Y. (1985), Ionospheric Evidence for Irregular Reconnection and Turbulent Plasma Flows in the Magnetotail during Periods of Northward Interplanetary Magnetic Field, J. Geophys. Res. 90, 5319–5325.

    Article  Google Scholar 

  • Campbell, W. H. (1982), Annual and Semiannual Changes of the Quiet Day Variations (Sq) in the Geomagnetic Field at North American Locations, J. Geophys. Res. 87, 785–796.

    Article  Google Scholar 

  • Chapman, S., and Bartels, J., Geomagnetism (Clarendon Press, Oxford 1940).

    Google Scholar 

  • Dungy, J. W. (1961), Interplanetary Magnetic Field and Auroral Zones, Phys. Rev. Lett. 6, 47–48.

    Article  Google Scholar 

  • Fairfield, D. H. (1963), Ionospheric Current Pattern in High Latitudes, J. Geophys. Res. 68, 3589–3602.

    Article  Google Scholar 

  • Fejer, J. A. (1964), Theory of Geomagnetic Daily Disturbance Variations, J. Geophys. Res. 69, 123–137.

    Article  Google Scholar 

  • Foster, J. C. (1983), An Empirical Electric Field Model Derived from Chatanika Radar Data, J. Geophys. Res. 88, 981–987.

    Article  Google Scholar 

  • Foster, J. C. (1984), Ionospheric Signatures of Magnetospheric Convection, J. Geophys. Res. 89, 855–865.

    Article  Google Scholar 

  • Foster, J. C., Radar-deduced Models of the Convection Electric Field, in Quantitative Modeling of Magnetosphere-ionosphere Coupling Processes (eds. Kamide, Y., and Wolf, R. A.) (Koyto Sangyo University, Kyoto, Japan 1987) pp. 71–76.

    Google Scholar 

  • Frank, L. A., Craven, J. D., Gurnetti, D. A., Shawhan, S. D., Weimer, D. R., Burch, J. L., Winningham, J. D., Chappell, C. R., Waite, J. H., Heelis, R. A., Maynard, N. C., Sugiura, M., Peterson, W. K., and Shelley, E. G. (1986), The Theta Aurora, J. Geophys. Res. 91, 3177–3224.

    Article  Google Scholar 

  • Friis-Christensen, E., and Wilhjelm, J. (1975), Polar Cap Currents for Different Directions of the Interplanetary Magnetic Field in the Y-Z Plane, J. Geophys. Res. 80, 1248–1260.

    Article  Google Scholar 

  • Friis-Christensen, E., Polar cap current systems, In Magnetospheric Currents (ed. Potemra, T. A.) (AGU, Washington D.C. 1984) pp. 86–95.

    Chapter  Google Scholar 

  • Fukushima, N. (1976), Generalized Theorem for No Ground Magnetic Effect of Vertical Currents Connected with Pedersen Currents in the Uniform-conductivity Ionosphere, Rep. Ionos. Space Res. Jap. 30, 35–40.

    Google Scholar 

  • Heelis, R. A., Reiff, P. H., Winningham, J. D., and Hanson, W. B. (1986), Ionospheric Convection Signatures Observed by DE-2 during Northward Interplanetary Magnetic Field, J. Geophys. Res. 84, 2567–2572.

    Google Scholar 

  • Horwitz, J. L., and Akasofu, S.-I. (1979), On the Relationship of the Polar Cap Current System to the North-south Component of the Interplanetary Magnetic Field, J. Geophys. Res. 84, 2567–2572.

    Article  Google Scholar 

  • Iijima, T., and Potemra, T. A. (1976a), The Amplitude Distribution of Field-aligned Currents at Northern High Latitudes Observed by Triad, J. Geophys. Res. 81, 2165–2174.

    Article  Google Scholar 

  • Iijima, T., and Potemra, T. A. (1976b), Field-aligned Currents in the Dayside Cusp Observed by Triad, J. Geophys. Res. 81, 5971–5975.

    Article  Google Scholar 

  • Iijima, T., Potemra, T. A., Zanetti, L. J., and Bythrow, P. F. (1984), Large-scale Birkeland Currents in the Dayside Polar Region during Strongly Northward IMF: A New Birkeland Current System, J. Geophys. Res. 89, 7441–7452.

    Article  Google Scholar 

  • Jaggi, R. K., and Wolf, R. A. (1973), Self-consistent Calculation of the Motion of a Sheet of Ions in the Magnetosphere, J. Geophys. Res. 78, 2852–2866.

    Article  Google Scholar 

  • Kamide, Y., and Matsushita, S. (1979a), Simulation Studies of Ionospheric Electric Fields and Currents in Relation to Field-aligned Currents, 1. Quiet Period, J. Geophys. Res. 84, 4083-4098.

    Article  Google Scholar 

  • Kamide, Y., and Matsushita, S. (1979b), Simulation Studies of Ionospheric Fields and Currents in Relation to Field-aligned Currents, 2. Substorms, J. Geophys. Res. 84, 4099–4115.

    Article  Google Scholar 

  • Kamide, Y., and Wolf, R. A., Quantitative Modeling of Magnetosphere-Ionosphere Coupling Processes (Kyoto Sangyo University 1987).

    Google Scholar 

  • Kamide, Y., Richmond, A. D., and Matsushita, S. (1981), Estimation of Ionospheric Electric Fields, Ionospheric Currents, and Field-aligned Currents from Ground Magnetic Records, J. Geophys. Res. 86, 801–813.

    Article  Google Scholar 

  • Kawasaki, K., and Akasofu, S.-I. (1967), Polar Solar Daily Geomagnetic Variations on Exceptionally Quiet Days, J. Geophys. Res. 72, 5363–5371.

    Article  Google Scholar 

  • Kileen, T. L., Heelis, R. A., Hays, P. B., Spenser, N. W., and Hanson, W. B. (1985), Neutral Motions in the Polar Thermosphere for Northward Interplanetary Magnetic Field, Geophys. Res. Lett. 12, 159–162

    Article  Google Scholar 

  • Kisabeth, J. L. (1979), On calculating magnetic and vector potential fields due to large-scale currents in an infinitely conducting earth, In Quantitative Modeling of Magnetospheric Processes (ed. Olson, W. P.) (AGU Washington, D. C. 1979) pp. 473–498.

    Chapter  Google Scholar 

  • Maezawa, K. (1976), Magnetospheric Convection Induced by the Positive and Negative Z Components of the Interplanetary Magnetic Field: Quantitative Analysis Using Polar Cap Magnetic Records, J. Geophys. Res. 81, 2289–2302.

    Article  Google Scholar 

  • Mansurov, S. M. (1969), New Evidence of a Relationship between Magnetic Fields in Space and on Earth, Geomag. Aeron. 9, 622–623.

    Google Scholar 

  • Matsushita, S., and Campbell, W., Physics of Geomagnetic Phenomena (Academic, New York 1967).

    Google Scholar 

  • Matsushita, S., and Xu, Wen-Yao (1982a), Sq and L Currents in the Ionosphere, Ann. Geophys. 38, 295–305.

    Google Scholar 

  • Matsushita, S., and Xu, Wen-Yao (1982b), Equivalent Ionospheric Current Systems Representing IMF Sector Effects on the Polar Geomagnetic Field, Planet. Space Sci. 30, 641–656.

    Article  Google Scholar 

  • Matsushita, S., and Xu, Wen-Yao (1982C), Equivalent Ionospheric Current Systems Representing Solar Daily Variations of the Polar Geomagnetic Field, J. Geophys. Res. 87, 8241–8254.

    Article  Google Scholar 

  • Matsushita, S., Tarpley, J. D., and Campbell, W. (1973), IMF Sector Structure Effects on the Quiet Geomagnetic Field, Radio Sci. 8, 963–972.

    Article  Google Scholar 

  • Mcdiarmid, I. B., Budzinski, E. E., Wilson, M. D., and Burrows, J. R. (1977), Reverse Polarity Field-aligned Currents at High Latitudes, J. Geophys. Res. 82, 1513–1518.

    Article  Google Scholar 

  • Mozer, F. S., and Gonzalez, W. D. (1973), Response of Polar Cap Convection to the Interplanetary Magnetic Field, J. Geophys. Res. 78, 6784–6786.

    Article  Google Scholar 

  • Nagata, T., and Kokubun, S. (1962), An Additional Geomagnetic Daily Variation Field (S p q Field) in the Polar Region on Geomagnetically Quiet Day, Rep. Ionos. Space Res. Jan. 16, 256–274.

    Google Scholar 

  • Nagata, T., and Mizuno, H. (1955), Sq-Field in the Polar Region on Absolutely Quiet Days, J. Geomag. Geoelectr. 7, 69–74.

    Article  Google Scholar 

  • Nisbet, J. S., Miller, M. J., and Carpenter, L. A. (1978), Currents and Electric Fields in the Ionospheric Due to Field-aligned Auroral Currents, J. Geophys. Res. 83, 2647–2657.

    Article  Google Scholar 

  • Nishida, A., Geomagnetic Diagnosis of the Magnetosphere (Springer-Verlag, New York, Heidelberg, Berlin 1978).

    Google Scholar 

  • Potemra, T. A., Iijima, T., and Saflekos, N. A., Large-scale characteristics of Birkeland currents, In Dynamics of the Magnetosphere (ed. Akasofu, S.-I.) (D. Reidel, New York 1979) pp. 165–199.

    Chapter  Google Scholar 

  • Rasmussen, C. E., and Schunk, R. W. (1987), Ionospheric Convection Driven by NBZ Currents, J. Geophys. Res. 92, 4491-4504.

    Article  Google Scholar 

  • Reiff, P. H. (1982), Sunward Convection in Both Polar Caps, J. Geophys. Res. 87, 5976–5980.

    Article  Google Scholar 

  • Saflekos, N. A., Sheehan, R. E., and Carovillano, R. L. (1982), Global Nature of Field-aligned Currents and their Relation to Auroral Phenomena, Rev. Geophys. Space Phys. 20, 709–734.

    Article  Google Scholar 

  • Southwood, D. J., and Wolf, R. A. (1978), An Assessment of the Role of Precipitation in Magnetospheric Convection, J. Geophys. Res. 83, 5227–5232.

    Article  Google Scholar 

  • Stern, D. P. (1983), The Origin of Birkeland Currents, Rev. Geophys. Space Phys. 21, 125–138.

    Article  Google Scholar 

  • Sugiura, M. (1975), Identification of the Polar Cap Boundary and the Auroral Belt in the High Latitude Magnetosphere: A Model for Field-aligned Currents, J. Geophys. Res. 80, 2057–2068.

    Article  Google Scholar 

  • Svalgaard, L. (1969), Sector Structure on the Interplanetary Magnetic Field and Daily Variation of the Geomagnetic Field at High Latitudes, Dan. Met. Inst. Geophys. Pap., R-16.

    Google Scholar 

  • Vasyliunas, V. M., The interrelationship of magnetospheric processes, In Earth’s Magnetospheric Processes (ed. McCormac, B. M.) (D. Reidel, Hingham, Mass. 1972) pp. 29–38.

    Google Scholar 

  • Volland, H. A. (1978), A Model of the Magnetospheric Electric Convection Field, J. Geophys. Res. 83, 2695–2699.

    Article  Google Scholar 

  • Yasuhara, F., and Akasofu. S.-I. (1977), Field-aligned Currents and Ionospheric Electric Fields, J. Geophys. Res. 82, 1279–1368.

    Article  Google Scholar 

  • Yasuhara, F., Kamide, Y., and Akasofu, S.-I. (1975), Field-aligned and Ionospheric Currents, Planet. Space Sci. 23, 1355–1368.

    Article  Google Scholar 

  • Zanetti, L. J., Potemra, T. A., Iijima, T., Baumjohan, W., and Bythrow, P. F. (1984), Ionospheric Birkeland Current Distributions for Northward Interplanetary Magnetic Field: Inferred Polar Convection, J. Geophys. Res. 89, 7453–7458.

    Article  Google Scholar 

  • Zmuda, A., and Armstrong, J. C. (1974a), The Diurnal Variation of the Region with Vector Magnetic Field Changes Associated with Field-aligned Currents, J. Geophys. Res. 79, 2501–2502.

    Article  Google Scholar 

  • Zmuda, A., and Armstrong, J. C. (1974b), The Diurnal Flow Pattern of Field-aligned Currents, J. Geophys. Res. 79, 4611–4619.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Xu, WY. (1989). Polar Region Sq . In: Campbell, W.H. (eds) Quiet Daily Geomagnetic Fields. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9280-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9280-3_5

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-2338-7

  • Online ISBN: 978-3-0348-9280-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics