Skip to main content
  • 15 Accesses

Zusammenfassung

Von den etwa 25 Gattungen der Familie haben nur wenige 30 oder mehr Arten: Syringa (30), Noronhia (40), Osmanthus und Ligustrum (je etwa 45), Fraxinus (70), Linociera (gegen 100) und Jasminum (300). Die Gattungen Abeliophyllum, Fontanesia, Hesperelaea, Picconia und Tessarandra umfassen nur 1–2 Arten. Für Angaben über Nutzpflanzen, einschließlich Parfümerie- und Heilpflanzen, wird nach (1) verwiesen. Für Oliven vgl. auch (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Rudolf Mansfelds Kulturpflanzenverzeichnis, I.e. Bd. Viii, Ref. [1] sub Cucurbitaceae.

    Google Scholar 

  2. H. T. Hartmann and P. C. Bougas, Olive production in Greece, Econ. Bot. 24, 443–459 (1970).

    Google Scholar 

  3. P. Baas et al., Wood anatomy of the Oleaceae, Iawa Bull. n.s. 9, 103–182 (1988).

    Google Scholar 

  4. a) Ruth Kiew, The genus Myxopyrum (Oleaceae), Blumea 29, 499–513 (1984). Gattung mit 4 Arten von tropischen Klimmpflanzen; das Genus gehört zu den Oleoideae.

    Google Scholar 

  5. E. Sondheimer et al., Plant Physiol. 45, 658 (1970): Isolation Gl-3, Gl-5, Gl-6 aus Samen von Fraxinus-, Olea-und Syringa-Arten; R. T. La Londe et al., J. Amer. Chem. Soc. 98, 3007 (1976): Strukturen Gl-3 und Gl-5.

    Google Scholar 

  6. M. Kikuchi and Y. Yamauchi, J. Pharm Soc. Japan 105, 142 (1985): Ligustrosidsäure, Oleuropeinsäure und Neonüzhenid aus Früchten von Ligustrum japonicum und lucidum; Bestätigung Struktur Gl-3.

    Google Scholar 

  7. M. Willems, Planta Medica 54, 66 (1988). Ligustrosid, Oleuropein, Nüzhenid und LF. (3)8 (= Gl-3) aus Früchten von Ligustrum vulgare.

    Google Scholar 

  8. T. Kamikawa et al., Tetrahedron 26, 4561 (1970). Struktur Jasminin-Ku-bota.

    Google Scholar 

  9. Y. Asaka et al., Tetrahedron 30, 3257 (1974). Bestätigung Struktur Jasminin-Ku-bota.

    Google Scholar 

  10. K. Inoue et al., Phytochemistry 24, 1299 (1985). Jasmosid und Jasmesosid aus Blättern von fasminum mesnyi (= f. primulinum).

    Google Scholar 

  11. T. Tanahashi et al., Tetrahedron Letters 29,1793 (1988). Sambacoside aus fasminum sambac.

    Google Scholar 

  12. T. Tanahashi et al., Chem. Pharm. Bull. 35, 5032 (1987). Sambacolignosid aus Blättern von f. sambac.

    Google Scholar 

  13. Y. Asaka et al., Tetrahedron 26, 2365 (1970).

    Google Scholar 

  14. M. Kikuchi and Y. Yamauchi, J. Pharm. Soc. Japan 107, 23 (1987).

    Google Scholar 

  15. S. S. Popov et al., Compt. Rend. Acad. Bulg. Sei. 28, 331, 1509 (1975).

    Google Scholar 

  16. H. Inouye and T. Nishioka, Chem. Pharm. Bull. 21, 497 (1973);

    Google Scholar 

  17. K. Furuichi and T. Miwa, Tetrahedron Letters 1974, 3689. Synthese Forsythiddimethylester.

    Google Scholar 

  18. H. Inouye et al., Tetrahedron Letters 1970, 2459;

    Google Scholar 

  19. H. Inouye et al., Tetrahedron 30, 201 (1974). Absolute Stereochemie Oleuropein; biogenetische Hypothese.

    Google Scholar 

  20. N. K. Hart et al., Austral. J. Chem. 22, 1283 (1969).

    Google Scholar 

  21. N. K. Hart et al., Austral. J. Chem. 24, 1739 (1971).

    Google Scholar 

  22. H. Ripperger, Phytochemistry 17, 1069 (1978).

    Google Scholar 

  23. G. Schneider und W. Kleinert, Planta Medica 22, 109 (1972).

    Google Scholar 

  24. C. Andary et al., Phytochemistry 21, 1123 (1982).

    Google Scholar 

  25. A. Sakurai and T. Kato, Bull. Chem. Soc. Japan 56,1573 (1983). Kusaginin aus Clerodendron trichotomum = „Kusagi“.

    Google Scholar 

  26. H. Becker et al., Z. Naturforsch. 57c, 351 (1982).

    Google Scholar 

  27. R. Cooper et al., J. Amer Chem. Soc. 102, 7953 (1980). Myricosid aus Clerodendron myricoides.

    Google Scholar 

  28. Per Molgaard and H. Ravn, Evolutionary aspects of caffeoyl ester distribution in dicotyledons, Phytochemistry 27, 2411–2421 (1988).

    Google Scholar 

  29. S. Kitagawa et al., J. Pharm. Soc. Japan 107, 274 (1987).

    Google Scholar 

  30. S. Kitagawa et al., Phytochemistry 1635 (1984).

    Google Scholar 

  31. K. Endo et al., Heterocycles 19, 261 (1982).

    Google Scholar 

  32. S. Nishibe et al., Chem. Pharm. Bull. 30,1048,4548 (1982). Forsythiasid = Forsythosid-A.

    Google Scholar 

  33. K. Endo et al., Heterocycles 16, 1311 (1981).

    Google Scholar 

  34. K. Endo and H. Hikino, Heterocycles 19, 2033 (1982).

    Google Scholar 

  35. S. Kitagawa et al., Chem. Pharm. Bull. 52, 1209 (1984).

    Google Scholar 

  36. Y. Kimura et al., Planta Medica 53, 148 (1987).

    Google Scholar 

  37. M. Kikuchi and Y. Yamauchi, J. Pharm. Soc. Japan 104, 390 (1984).

    Google Scholar 

  38. M. Kikuchi and Y. Yamauchi, Eid., ibid. 105, 542 (1985).

    Google Scholar 

  39. M. Kikuchi and Y. Yamauchi, Eid., ibid. 105, 411 (1985).

    Google Scholar 

  40. M. Kikuchi and Y. Yamauchi, Eid., ibid. 105, 442 (1985).

    Google Scholar 

  41. M. Kikuchi etal., J. Pharm. Soc. Japan 107, 350 (1987).

    Google Scholar 

  42. L. Birkhofer et al., Z. Naturforsch. 25b, 1051 (1968).

    Google Scholar 

  43. M. Ahmad, The chemical constituents of Buddleja davidii and Syringa vulgaris, Diss. No. 7903, Eth Zürich 1985.

    Google Scholar 

  44. B. E. Ellis, Phytochemistry 22, 1941 (1983).

    Google Scholar 

  45. J. A. Pedersen, Phytochemistry 17, Iis (1978).

    Google Scholar 

  46. J. B. Harborne and P. S. Green, Bot. J. Linn. Soc. 81, 155 (1980).

    Google Scholar 

  47. H. Thieme und H.-J. Winkler, Pharmazie 25, 519 (1968);

    Google Scholar 

  48. H. Thieme und H.-J. Winkler, Pharmazie 24, 117, 292 (1969).

    Google Scholar 

  49. M. Chiba et al., Phytochemistry 19, 335 (1980).

    Google Scholar 

  50. H. Kameoka et al., Phytochemistry 14, 1676 (1975).

    Google Scholar 

  51. S. Nishibe et al., J. Pharm. Soc. Japan 97, 1130 (1977).

    Google Scholar 

  52. K. Matsuo et al., Phytochemistry 11, 1522 (1972).

    Google Scholar 

  53. f) K. Endo and H. Hikino, Canad. J. Chem. 62, 2011 (1984);

    Google Scholar 

  54. K. Endo et al., Tetrahedron 43, 2681 (1987): Hier für Rengyoxid tautomere Form angegeben.

    Google Scholar 

  55. C. H. Fitzgerald and M. Reines, A comparative study of flavonoid content of Fraxinus americana and F. pennsylvanica, Castanea 34, 192–194 (1969). F. americana enthält in Blättern zwei Lu-glykoside, die F. pennsylvanica fehlen; differentialdiagnostisch wichtiges Merkmal.

    Google Scholar 

  56. Sh. Nakaya et al., C.A. 70, 103 691 (1969). Fraxin, Aesculin und Aesculetin in Rinde japanischer Arten: Fraxinus japonica, lanuginosa, longicuspis, mandshurica, sieboldiana.

    Google Scholar 

  57. V. Plouvier, Compt. Rend. 267D, 1883 (1968).

    Google Scholar 

  58. S. R. Jensen and B. J. Nielsen, Phytochemistry 15, 221 (1976).

    Google Scholar 

  59. C. Jukes and D. H. Lewis, Phytochemistry 13, 1519 (1974).

    Google Scholar 

  60. G. R. Nagarajan etal., Phytochemistry 19, 2494 (1980).

    Google Scholar 

  61. G. R. Nagarajan etal., Indian J. Pharm. Sei. 46, 176 (1985);

    Google Scholar 

  62. G. R. Nagarajan etal., Indian J. Pharm. Sei. ex Cromap 7, A85–08–406 (1985).

    Google Scholar 

  63. X. A. Dominguez et al., Rev. Latinoamer. Quirn. 71, 116 (1980).

    Google Scholar 

  64. Sutarjadi et al., Phytochemistry 17, 564 (1978).

    Google Scholar 

  65. H. Inouye et al., Phytochemistry 14, 304 (1975).

    Google Scholar 

  66. H. Kodaira et al., Chem. Pharm. Bull. 29, 2391 (1981);

    Google Scholar 

  67. H. Kodaira et al., Chem. Pharm. Bull. 31, 2262 (1983).

    Google Scholar 

  68. H. Tsukamoto et al., Chem. Pharm. Bull. 52, 4482 (1984).

    Google Scholar 

  69. H. Tsukamoto et al., Eid., ibid. 55, 4069 (1985).

    Google Scholar 

  70. M. V. Artemyeva et al., Khim. Prirod. Soedin. 1973, 433.

    Google Scholar 

  71. M. Terezawa and T. Sasaya, Mokuzai Gakkaishi 17, 167–173 (1971);

    Google Scholar 

  72. M. Terezawa and T. Sasaya, Mokuzai Gakkaishi CA. 75, 50 589 (1971).

    Google Scholar 

  73. Eid., ibid. 16, 192 (1970); ex C.A. 74, 108 116 (1971).

    Google Scholar 

  74. M. Terezawa et al., Proc. Hokkaido Branch Japan. Wood Res. Soc. 6, 53 (1974);

    Google Scholar 

  75. M. Terezawa et al., Proc. Hokkaido Branch Japan. Wood Res. Soc. Mokuzai Gakkaishi 30, 394 (1984).

    Google Scholar 

  76. H. Miyachi et al., J. Pharm. Soc. Japan 107, 435 (1987).

    Google Scholar 

  77. J. Grujic-Vasic et S. Ramic, Mat. Med., Ree. Trav. Inst. Recherches Plantes Med. Belgrade 6, 25 (1968).

    Google Scholar 

  78. M. V. Artemyeva et al., Khim. Prirod. Soedin. 1973, 493; V. K. Ahluwalia et al., Indian J. Chem. 16B, 286 (1978). Strukturbeweis Isofraxetin durch Synthese.

    Google Scholar 

  79. I. M. Potanova et al., Khim. Prirod. Soedin. 1976, 100.

    Google Scholar 

  80. R. C. Cambie and J. C. Parnell, New Zealand J. Sei. 13, 108 (1970).

    Google Scholar 

  81. N. K. Hart et al., Austral. J. Chem. 21, 1321 (1968).

    Google Scholar 

  82. N. K. Hart et al., ibid. 22, 1283 (1969).

    Google Scholar 

  83. T. A. Hase et al., Phytochemistry 20, 2594 (1981).

    Google Scholar 

  84. S. M. Deshpande and R. R. Upadhyay, Experientia 26, 10 (1970). Aus Blättern Lupeol und ein Jasminol genanntes Triterpen.

    Google Scholar 

  85. S. A. Ross and M. A. Abdel-Hafiz, J. Nat. Prod. 47, 736 (1984). K- und Q-3-glykoside; Sambacin, Jasminin-KuBota.

    Google Scholar 

  86. S. Popov et al., Compt. Rend. Acad. Bulgare Sei. 23, 1247 (1970).

    Google Scholar 

  87. K. Inoue et al., Phytochemistry 21, 359 (1982).

    Google Scholar 

  88. H. K. Desai et al., Indian J. Chem. 8, 851 (1970).

    Google Scholar 

  89. A. M. EL-Moghazy et al., Fitoterapia 51, 197 (1980).

    Google Scholar 

  90. S. A. Ross et al., Fitoterapia 53, 91 (1982).

    Google Scholar 

  91. M. Kikuchi et al., J. Pharm. Soc. Japan 102, 533 (1982).

    Google Scholar 

  92. H. Inouye and T. Nishioka, Tetrahedron 28, 4231 (1972).

    Google Scholar 

  93. Y. Fukuyama et al., Planta Medica 53, 427 (1987).

    Google Scholar 

  94. K. Inoue et al., Phytochemistry 21, 2305 (1982).

    Google Scholar 

  95. H. Inouye, Neuere Ergebnisse über die Biosynthese der Glucoside der Iridoidreihe, Planta Medica 33, 193–216 (1978). S. 214 Biogenese der Secoiridoide vom Oleosidtyp und Formel Ligustalosid.

    Google Scholar 

  96. K. Kudo et al., Planta Medica 40, 250 (1980).

    Google Scholar 

  97. M. Kikuchi et al., J. Pharm. Soc. Japan 101, 575 (1981).

    Google Scholar 

  98. B. S. Joshi and D. H. Gawad, Proc. Indian Acad. Sei. 86 A, 41 (1977).

    Google Scholar 

  99. T. R. Govindachari et al., Indian J. Chem. 7, 308 (1969).

    Google Scholar 

  100. M. Kikuchi, Agric. Biol. Chem. 45, A20 (1981).

    Google Scholar 

  101. M. Kikuchi and Y. Yamauchi, Nippon Nogeikagaku Kaishi 56, No. 10 (1982).

    Google Scholar 

  102. M. Kikuchi and Y. Yamauchi, Nippon Nogeikagaku Kaishi Agric. Biol. Chem. 46, A24 (1982).

    Google Scholar 

  103. M. Kikuchi and Y. Yamauchi, J. Pharm. Soc. Japan 102, 1086 (1982).

    Google Scholar 

  104. M. Kikuchi and Y. Yamauchi, Eid., ibid. 103, 360 (1983).

    Google Scholar 

  105. M. Kikuchi and Y. Yamauchi, Eid., Agric. Biol. Chem. 47, A4 (1983).

    Google Scholar 

  106. T. Kurihara and M. Kikuchi, J. Pharm. Soc. Japan 100, 1161 (1980).

    Google Scholar 

  107. S. A. Gharbo et al., U. A. R. J. Pharm. Sei. 11, 113 (1970).

    Google Scholar 

  108. M. Willems, Sei. Pharm. (Wien) 54, 288 (1986);

    Google Scholar 

  109. M. Willems, Arch Pharm. 320, 1245 (1987);

    Google Scholar 

  110. M. Willems, Arch Pharm. 321, 229 (1988).

    Google Scholar 

  111. I. M. Morice, Phytochemistry 14, 765 (1975).

    Google Scholar 

  112. K. George and S. Geethamma, Cytological and other evidences for the taxonomic position of Nyctanthes arhor-tristis, Current Sei. 53, 439–441 (1984).

    Google Scholar 

  113. K. George and S. Geethamma, Ruth Kiew and P. Baas, Nyctanthes is a member of Oleaceae, Proc. Indian Acad. Sei. (Plant Sei.) 93, 349–358 (1984).

    Google Scholar 

  114. H. Rimpler und J.-U. Junghanns, Tetrahedron Letters 1975, 2423;

    Google Scholar 

  115. H. Rimpler, Planta Medica 33, 327–331 (1978): Ableitung von 8a-Konfiguration;

    Google Scholar 

  116. S. R. Jensen and B. J. Nielsen, Phytochemistry 21,1623 (1982): Nyctanthosid hat 8ß-Konfiguration, ist also ein Loganin-, nicht ein 8-Epilo-ganinderivat.

    Google Scholar 

  117. K. K. Purushothaman etal., Phytochemistry 24, 773 (1985).

    Google Scholar 

  118. J. S. Chauhan and M. Saraswat, J. Indian Chem. Soc. 55, 1049 (1978).

    Google Scholar 

  119. V. K. Dhingra et al., Indian J. Chem. 14 B, 231 (1976).

    Google Scholar 

  120. R. S. Saxena et al., J. Ethnopharmacol. 11, 319 (1984).

    Google Scholar 

  121. H. Tsukamoto et al., Chem. Pharm. Bull. 32, 2730 (1984);

    Google Scholar 

  122. H. Tsukamoto et al., Chem. Pharm. Bull. 33, 1232 (1985).

    Google Scholar 

  123. M. Chiba et al., Chem. Pharm. Bull. 27, 2868 (1979).

    Google Scholar 

  124. P. M. Viviers et al., Tetrahedron Letters 1979, 3773.

    Google Scholar 

  125. H. Tsukamoto et al., Phytochemistry 23, 2839 (1984).

    Google Scholar 

  126. H. Tsukamoto et al., Phytochemistry 23, 699 (1984);

    Google Scholar 

  127. H. Tsukamoto et al., Chem. Pharm. Bull. 33, 396 (1985).

    Google Scholar 

  128. R. Caputo et al., Phytochemistry 13, 2825 (1974).

    Google Scholar 

  129. P. Gariboldi et al., Phytochemistry 25, 865 (1986). Oleuropein, Demethyloleuropein und ihre Aglyka sind Ovipositionsstimulatoren für die Olivenfliege, Dacus olivae, die gleichzeitig Überträger des Pathogens Pseudomonas savastonoi ist.

    Google Scholar 

  130. H. Kuwajima et al., Phytochemistry 27, 1757 (1988). Oleurosid ist Doppelbindungsisomer von Oleuropein: A8,10 an Stelle von A8, 9.

    Google Scholar 

  131. E. Ragazzi et al., Annali Chim. (Roma) 63, 13, 21 (1973).

    Google Scholar 

  132. A. Vazquez Ronce-ro and M. L. Janer del Valle, C.A. 71, 88410 (1969).

    Google Scholar 

  133. R. Caputo et al., Phytochemistry 13, 1551 (1974).

    Google Scholar 

  134. E. Ragazzi e G. Veronese, Annali Chim. (Roma) 57, 1386 (1967).

    Google Scholar 

  135. J.-P. Bianchini etal., Phytochemistry 27, 2301 (1988).

    Google Scholar 

  136. H. Inouye etal., Phytochemistry 14, 2029 (1975).

    Google Scholar 

  137. M. Kikuchi, J. Pharm. Soc. Japan 104, 535 (1984).

    Google Scholar 

  138. I. S. Mosumov et al., Khim. Prirod. Soedin. 1984, 265.

    Google Scholar 

  139. M. Kikuchi etal., J. Pharm. Soc. Japan 107, 245 (1987).

    Google Scholar 

  140. Eid., ibid. 108, 355 (1988).

    Google Scholar 

  141. O. Sticher et al., Planta Medica 45, 151 (1982).

    Google Scholar 

  142. A. Takhtajan, Floristic regions of the world, University of California Press, Berkeley etc. 1986.

    Google Scholar 

  143. N. G. Bisset et al., Phytochemistry 28, 1553 (1989).

    Google Scholar 

  144. S. Kitagawa et al., Chem. Pharm. Bull. 36, 3667 (1988).

    Google Scholar 

  145. K. Seya et al., Phytochemistry 28, 1495 (1989).

    Google Scholar 

  146. G. R. Nagarajan et al., Indian J. Pharm. Sei., Sept.-Oct., 176–177 (1984).

    Google Scholar 

  147. T. Tamahashi et al., Phytochemistry 28, 1413 (1989).

    Google Scholar 

  148. Y.-Ch. Sheng and Ch.-H. Chen, J. Nat. Prod. 52, 1060 (1989).

    Google Scholar 

  149. H. Kuwajima et al., Phytochemistry 28, 1409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Basel AG

About this chapter

Cite this chapter

Hegnauer, R. (1990). Oleaceae. In: Chemotaxonomie der Pflanzen. Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, vol 31. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9256-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9256-8_31

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9965-9

  • Online ISBN: 978-3-0348-9256-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics