Skip to main content
  • 13 Accesses

Zusammenfassung

Neue anatomische Arbeiten sind den Samen und dem Arillus von Myristica fragrans (1) und der Blattanatomie asiatischer Myristicaceen (2) gewidmet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. P. R. M. Rao, Nutmeg seed: Its morphology and developmental anatomy, Phytomorphology 24, 262–273 (1974).

    Google Scholar 

  2. J. Koster and P. Baas, Comparative leaf anatomy of the asiatic Myristicaceae, Blumea 27, 115–173 (1980): U.a. Bau der Haare, Cuticula, Kristalle, Öl- und Schleimzellen, „Gerbstoff“-Schläuche in den Nerven; vgl. auch eid., Alveolar cuticular material in Myristicaceae, S. 131–138 in D. F. Cutler et al., 1982, 1. c. Bd. Vii, S. 397.

    Google Scholar 

  3. L. O. Williams, Ucuhuba and related wax-like vegetable tallows used in soap and candle manufacture, Qual. Plant. Mat. Veget. 7, 295–296 (1960). Aus Samen von Virola-, Dialyanthera- und vielleicht Osteophloeum-Arten.

    Google Scholar 

  4. O. R. Gottlieb, Chemical studies on medicinal Myristicaceae from Ammonia, J. Ethnopharmacol. 1, 309–323 (1979).

    Article  Google Scholar 

  5. O. R. Gottlieb et al., Phytochemistry 12, 1830 (1973). Virolan und Virolanol aus Virola divergens, melinonii, pavans, venosa und surinamensis isoliert; bei V. calophylla, elongata (= cuspidata), multicostata und rufula (= theiodora) nicht beobachtet.

    Google Scholar 

  6. M. A. DE Alvarenca et al., Phytochemistry 17, 511 (1978).

    Article  Google Scholar 

  7. R. E. Schultes and Bo Holmstedt, Miscellaneous notes on myristicaceous plants of South America, Lloydia 34, 61–78 (1971). Campsoneura-, Dialyanthera-, Iryanthera-, Osteophloeum- und Virola-Arten; Virola theiodora auch zur Vergiftung von Pfeilspitzen verwendet; Herstellung solcher Pfeile beschrieben.

    Google Scholar 

  8. G. T. Prance, Notes on the use of plant hallucinogens in Amaonian Brasil, Econ. Bot. 24, 62–68 (1970). Virola, Psychotria, Banisteriopsis.

    Google Scholar 

  9. D. J. Mckenna and G. H. N. Towers, On the comparative ethnopharmacology of malpighiaceous and myristicaceous hallucinogens, J. Psychoactive Drugs 17, 35–39 (1985).

    Article  Google Scholar 

  10. D. J. Mckenna et al., Monoamine oxidase inhibitors in South American hallucinogenic plants. Part 2: Constituents of orally active myristicaceous plants, J. Ethnopharmacol. 12, 179–211 (1984).

    Article  Google Scholar 

  11. S. Agurell et al., Alkaloids in certain species of Virola and other South American plants of ethnopharmacological interest, Acta Chem. Scand. 23, 903–916 (1969). Virola calophylla, rufula, theiodora mit viel Alkaloiden; bei V. multinervia und venosa kommen Alkaloide nur spurenweise vor.

    Google Scholar 

  12. Bo Holmstedt et al., Indole alkaloids in Amazonian Myristicaceae: Field and laboratory research, Bot. Museum Leaflets, Harvard University 28, 215–234 (1980). Hier wird von Osteophloeum platyphyllum gesprochen; gemeint ist wahrscheinlich O. platyspermum.

    Google Scholar 

  13. D. A. Kalb-Hen, Muskatnufl als Rauschdroge. Ein Beitrag zur Chemie und Pharmakologie der Muskatnuß (Myristica fragrans), Angew. Chemie 83, 392–396 (1971).

    Article  Google Scholar 

  14. C. Galeffi et al., N,N-Dimethyl-5-methoxytryptamine, a component of a dart poison of the Yanoríma Indians, J. Nat. Prod. 46, 586–587 (1983).

    Article  Google Scholar 

  15. K. Kawanishi and Y. Hashimoto, Phytochemistry 26, 749 (1987).

    Article  Google Scholar 

  16. E. K. Nemethy et al., ibid. 25, 959 (1986).

    Google Scholar 

  17. I. Kitagawa et al., Chem. Pharm. Bull. 20, 2278 (1972).

    Article  Google Scholar 

  18. L. M. V. Tillekeratne et al., Phytochemistry 21, 476 (1982).

    Article  Google Scholar 

  19. A. A. L. Gunatilaka et al., Phytochemistry 21, 2719 (1982).

    Article  Google Scholar 

  20. R. Alves DE Lima et al., Phytochemistry 14, 1831 (1975).

    Article  Google Scholar 

  21. N. C. Franca et al., ibid. 13, 1631 (1974).

    Google Scholar 

  22. R. Braz Filho et al., ibid. 19, 455 (1980).

    Google Scholar 

  23. A. A. MoRAis et al., ibid. 24, 3023 (1985). Synthese Spiroelliptin und der verwandten Phytoalexine Spirobroussonine-A und -B aus Broussonetia papyrifera.

    Google Scholar 

  24. P. C. Vieira et al., ibid. 22, 2281 (1983).

    Google Scholar 

  25. P. C. Vieira et al., ibid. 22, 711 (1983). Auch Korrektur von Jurenolid-Struktur.

    Google Scholar 

  26. P. P. Diaz and Aura M. P. Diaz, ibid. 25, 2395 (1986).

    Google Scholar 

  27. N. C. Franca et al., ibid. 14, 590 (1975).

    Google Scholar 

  28. R. Braz Filho et al., ibid. 19, 1195 (1980).

    Google Scholar 

  29. Liliana Garzon N. et al., ibid. 26, 2835 (1987).

    Google Scholar 

  30. M. Elita L. DE Almeida et al., ibid. 18, 1015 (1979).

    Google Scholar 

  31. B. S. JosHi et al., Experientia 34, 422 (1978); Tetrahedron 35, 1665 (1979): Isolation und Struktur; M. Loriot et al., Tetrahedron 39, 2795 (1983): Synthese.

    Google Scholar 

  32. A. R. S. Kartha et al., Chemistry and Industry 1973, 135.

    Google Scholar 

  33. G. F. Spencer et al., J. Nat. Prod. 43, 724 (1980).

    Article  Google Scholar 

  34. Y. T. Lin et al., C. A. 75, 137464 (1971).

    Google Scholar 

  35. N. F. Cooray et al., Phytochemistry 26, 3369 (1987).

    Article  Google Scholar 

  36. N. S. Kumar et al., ibid. 27, 465 (1988).

    Google Scholar 

  37. K. K. Purushothaman et al., J. C. S. Perkin I 1977, 587. Offensichtlich aus Arillus isoliert; vgl. (34).

    Google Scholar 

  38. K. K. Purushothaman et al., Indian J. Chem. 23B, 46 (1984).

    Google Scholar 

  39. Y. H. Kuo et al., Experientia 32, 828 (1976).

    Article  Google Scholar 

  40. J. E. Forrest and R. A. Heacock, Nutmeg and mace, the psychotropic spices from Myristica fragrans, Lloydia 35, 440–449 (1972).

    Google Scholar 

  41. C. J. Sherry and R. E. Burnett, Enhancement of ethanol induced sleep by whole oil of nutmeg, Experientia 34, 492–493 (1978).

    Article  Google Scholar 

  42. K. J. Sanford and D. E. Heiz, Phytochemistry 10, 1245 (1971). 9 Phenylpropane im 01; ihr Gehalt steigt beim Verlust der leichtflüchtigen Monoterpene Pinen, Sabinen, Thujen.

    Google Scholar 

  43. J. E. Forrest et al., J. C. S. Perkin I 1974, 205. 4 dilignolartige (vgl. Bd. Vii, S. 496) Lignane und 2 dihydrobenzofuranoide Neolignane aus Samen, und 3 Dilignole und die gleichen Neolignane aus Arillus.

    Google Scholar 

  44. A. Isogai et al., Agric. Biol. Chem. 37, 193, 889, 1479 (1973). 4 Phenylpropane, 5 Dilignole, 3 dihydrobenzofuranoide Neolignane und Dehydrodieugenol; alle mit Ausnahme der letzterwähnten Verbindung sind toxisch für Seidenraupen.

    Google Scholar 

  45. J. E.Forrest et al., J. Chromatography 69, 125 (1972). 87,5% Monoterpene, 5,5% Monoterpenalkohole und 6,5% Phenylpropane, worunter 1,9% Safrol und 3,8% Myristicin.

    Google Scholar 

  46. M. Hattori et al., Chem. Pharm. Bull. 35, 668, 3315 (1987); 36, 648 (1988). 3 Phenylpropane, worunter Anthriscinol, 3,4-Dimethyl-2,5-diaryltetrahydrofuranlignane (Nectandrin, Verrucosin, Fragransine), ein 2,3-dimethyl-1,4-bisarylbutanoides Lignan, 3 Neolignane der aryltetrahydrobenzofuran-Klasse, worunter Fragransol-C und -D, und Dilignole, worunter Myristicanol-A und -B.

    Google Scholar 

  47. J. E. Forrest et al., Experientia 29, 139 (1973) Dehydrodiisoeugenol.

    Google Scholar 

  48. Won Sick Woo et al., Phytochemistry 26, 1542 (1987). Das Diphenylbutanlignan Macislignan („macelignan“) und meso-Dihydroguajaretinsäue.

    Google Scholar 

  49. S. Hada et al., Phytochemistry 27, 563 (1988). 5 Lignane (Fragransine, Austrobailignan-7) und 8 Neolignane (Dilignole und aryldihydrobenzofuranoide Verbindungen).

    Google Scholar 

  50. I. P. Varshney and S. C. Sharma, Indian J. Chem. 6, 474 (1968). Auch freie Myristinsäure isoliert.

    Google Scholar 

  51. R. Braz Filho et al., Lloydia 40, 236 (1977).

    Google Scholar 

  52. R. Braz Filho et al., Planta Medica 50, 53 (1984).

    Article  Google Scholar 

  53. C. M. Lox et al., Phytochemistry 22, 1973 (1983).

    Article  Google Scholar 

  54. R. Braz Filho et al., Phytochemistry 15, 1029 (1976).

    Article  Google Scholar 

  55. J. C. Martinez V. and L. E. Cucas, J. Nat. Prod. 50, 1045 (1987).

    Article  Google Scholar 

  56. J. C. Martinez V., Phytochemistry 24, 1867 (1985).

    Article  Google Scholar 

  57. O. R. Gottlieb et al., ibid. 15, 773 (1976)

    Google Scholar 

  58. K. KAwAnishi et al., ibid. 20, 1166 (1981); 21, 929, 2725 (1982); 22, 2277 (1983). Neolignane, Dehydrodieugenol, Carinatin, Carinaton, Carinatol, Carinatonol, Carinatidiol, Dehydrodieugenol-B u. a.

    Google Scholar 

  59. S. DE H. Cavalcante et al., ibid. 24, 1051 (1985). Cubebin, Hinokinin, Asarinin und Neolignan Eusiderin-A aus Samen und 5 Neolignane aus Perikarp.

    Google Scholar 

  60. G. E. Blair et al., ibid. 8, 497 (1969).

    Google Scholar 

  61. J. M. Cassady et al., Lloydia 34, 161 (1971).

    Google Scholar 

  62. J. B. Fernandes et al., Phytochemistry 19, 1523 (1980).

    Google Scholar 

  63. W. D. Macrae and G. H. N. Towers, ibid. 24, 561 (1985).

    Google Scholar 

  64. Eid., An ethnopharmacological examination of Virola elongata bark: A South American arrow poison, J. Ethnopharmacol. 12, 75–92 (1984).

    Google Scholar 

  65. J. C. Martinez V. et al., Phytochemistry 24, 1612 (1985). In Colombia gesammelt.

    Google Scholar 

  66. M. J. Kato et al., ibid. 24, 533 (1985).

    Google Scholar 

  67. Eid., ibid. 25, 279 (1986).

    Google Scholar 

  68. S. DE H. Cavalcante et al., ibid. 24, 1865 (1985).

    Google Scholar 

  69. Braz Filho et al., ibid. 12, 417 (1973); 15, 567 (1976).

    Google Scholar 

  70. M. Pio Correa, 1. Bd., 306 (1926), 1. c. Bd. Vii, S. 115.

    Google Scholar 

  71. P. Ghirardi and A. Marzo, Phytochemistry 10, 907 (1971).

    Article  Google Scholar 

  72. G. J. Persinos et al., Lloydia 33, 494 (1970); A. Lai et al., Lloydia 36, 437 (1973).

    Google Scholar 

  73. E. Corothie and T. Nakano, Planta Medica 17, 185 (1969).

    Article  Google Scholar 

  74. K. Kawanishi et al., Phytochemistry 24, 1373 (1985).

    Article  Google Scholar 

  75. Lucia M. X. Lopes et al., ibid. 21, 1751 (1982); 22, 1516 (1983); 23, 202, 2647 (1984).

    Google Scholar 

  76. C. E. S. Barata et al., ibid. 17, 783 (1978).

    Google Scholar 

  77. R. Baruffaldi et al., Rev. Farm. Bioquim. Univ. Sao Paulo 13, 91 (1975).

    Google Scholar 

  78. T. C. Whitmore (ed.), Tree flora of Malaya, Longman, London, Bd. 1 (1972): Myristicaceae by T. C. Whitmore, S. 315–345.

    Google Scholar 

  79. J. E. Armstrong and A. K. Irvine, Amer. J. Bot. 76, 74–85, 86–94 (1989): Cantharophilie ist primitives Merkmal.

    Google Scholar 

  80. A. A. Morais et al., Phytochemistry 28, 239 (1989).

    Article  Google Scholar 

  81. M. J. Gonzalez et al., Fitoterapia 59, 486 (1988); vgl. auch A. KijjoA et al., ibid. 59, 136 (1988);

    Google Scholar 

  82. Madalena M. M. Pinto et al., Phytochemistry 27, 3988 (1988).

    Article  Google Scholar 

  83. EsreranzaLlamil Z. et al., Spectros. Int. J. 6, 157 (1988).

    Google Scholar 

  84. N. Nakatani and K. Ikeda, Chemistry Express (Kinki Chem. Soc., Japan) 2, 627 (1987).

    Google Scholar 

  85. N. Nakatani et al., Phytochemistry 27, 3127 (1988).

    Google Scholar 

  86. K. K. Purushothaman and A. Sarada, Indian J. Chem. 19B, 236 (1980).

    Google Scholar 

  87. Susana A. Zacchino and H. Badano, J. Nat. Prod. 51, 1261 (1988): Neolignane des 8–0–4’–Typs.

    Google Scholar 

  88. N. Nakamura et al., Chem. Pharm. Bull. 36, 2685 (1988): Ist larvizides Prinzip.

    Google Scholar 

  89. D. A. Kalbhen, Die Muskatnuss als Rauschdroge: Ein Beitrag zur Chemie und Pharmakologie der Muskatnuss (Myristica fragrans), Angew. Chem. 83, 392–396 (1971).

    Article  Google Scholar 

  90. A. G. Ferreira et al., Phytochemistry 28, 579 (1989).

    Article  Google Scholar 

  91. C. A. Guarin et al., Spectros. Int. J. 6, 107 (1988).

    Google Scholar 

  92. Y.-H. Ku° et al., Chem. Pharm. Bull. 37, 2310 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Basel AG

About this chapter

Cite this chapter

Hegnauer, R. (1990). Myristicaceae. In: Chemotaxonomie der Pflanzen. Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, vol 31. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9256-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9256-8_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9965-9

  • Online ISBN: 978-3-0348-9256-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics