Skip to main content

The Crystalline Algorithm for Computing Motion by Curvature

  • Conference paper

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 25))

Abstract

Motion by (weighted) mean curvature is a geometric evolution law for surfaces, representing steepest descent with respect to (anisotropic) surface energy. The crystalline algorithm is a numerical method for computing this motion. The main idea of this method is to solve the analogous evolution law for a crystalline surface energy which approximates the underlying smooth one. We have recently explored the nature of this method, demonstrating its convergence in some simple special cases. This paper summarizes our results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Almgren and J.E. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Diff. Geom. 42 (1995) 1–22.

    MathSciNet  MATH  Google Scholar 

  2. F. Almgren, J.E. Taylor, and L. Wang, Curvature driven flows: a variational approach, SIAM J. Cont. Opt. 31 (1993) 387–437.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Almgren, Variational Algorithms and pattern formation in dendritic solidification, J. Comp. Phys. 106 (1993) 337–354.

    MathSciNet  MATH  Google Scholar 

  4. R. Almgren, Crystalline Saffman-Taylor fingers, SIAM J. Appl. Math. 55 (1995) 1511–1535.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Angenent, D. Chopp, and T. Emanen, A computed example of nonuniqueness of mean curvature flow in3, Comm. Part. Diff. Eqns. 20 (1995) 1937–1958.

    Article  Google Scholar 

  6. S. Angenent and M. Gurtin, Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface, Arch. Rat. Mech. Anal. 108 (1989) 323–391.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Angenent, T. Emanen, and J.J.L. Velazquez, Nonuniqueness in geometric heat flows, in preparation.

    Google Scholar 

  8. G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motion by mean curvature, SIAM J. Numer. Anal. 32 (1995) 484–500.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Barles, H.M. Soner, and P.E. Souganides, Front propagation and phase field theory, SIAM J. Cont. Opt. 31 (1993) 439–469.

    Article  MATH  Google Scholar 

  10. E. Ben-Jacob, R. Kupferman, and O. Schochet, Numerical study of a morphology diagram in the large undercooling limit using a phase field model, Phys. Rev. E 50 (1994) 1005ff.

    Article  Google Scholar 

  11. W.C. Carter, A.R. Roosen, J.W. Cahn and J.E. Taylor, Shape evolution by surface diffusion and surface attachment limited kinetics on completely faceted surfaces, Acta Metall, et Mater. 43 (1995) 4309–4324.

    Article  Google Scholar 

  12. Y.-G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Diff. Geom. 33 (1991) 749–786.

    MathSciNet  MATH  Google Scholar 

  13. L.C. Evans, Convergence of an algorithm for mean curvature flow, Indiana Univ. Math. J. 42 (1993) 533–557.

    Article  MathSciNet  MATH  Google Scholar 

  14. L.C. Evans, H.M. Soner, and P.E. Souganides, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 (1992) 1097–1123.

    Article  MathSciNet  MATH  Google Scholar 

  15. L.C. Evans and J. Spruck, Motion of level sets by mean curvature, J. Diff. Geom. 33 (1991) 635–681.

    MathSciNet  MATH  Google Scholar 

  16. T. Fukui and Y. Giga, Motion of a graph by nonsmooth weighted curvature, in Proc. First World Congress of Nonlinear Analysts, V. Lakshmikantham, ed., W. de Gruyter, 1995, Vol. I, 47–56.

    Google Scholar 

  17. M. Gage and R.S. Hamilton, The heat equation shrinking convex plane curves, J. Diff. Geom. 23 (1986) 69–95.

    MathSciNet  MATH  Google Scholar 

  18. P.M. Girão, Convergence of a crystalline algorithm for the motion of a simple closed convex curve by weighted curvature, SIAM J. Numer. Anal. 32 (1995) 886–899.

    Article  MathSciNet  MATH  Google Scholar 

  19. P.M. Girão and R.V. Kohn, Convergence of a crystalline algorithm for the heat equation in one dimension and for the motion of a graph by weighted curvature, Numer. Math. 67 (1994) 41–70.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Gurtin, Thermomechanics of Evolving Phase Boundaries, Oxford Univ. Press (1993).

    MATH  Google Scholar 

  21. T.Y. Hou, J.S. Lowengrub, and M.J. Shelley, Removing the stiffness from interfacial flows with surface tension, J. Comp. Phys. 114 (1994) 312–338

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Kobayashi, A numerical approach to three-dimensional dendritic solidification, Experimental Math. 3 (1994) 59–81.

    MATH  Google Scholar 

  23. B. Merriman, J. Bence, and S. Osher, Motion of multiple junctions: a level set approach, J. Comp. Phys. 112 (1994) 334–363.

    Article  MathSciNet  Google Scholar 

  24. R.H. Nochetto, M. Paolini, and C. Verdi, A dynamic mesh algorithm for curvature dependent evolving interfaces, J. Comp. Phys. 123 (1996) 296–310.

    Article  MathSciNet  MATH  Google Scholar 

  25. R.H. Nochetto and C. Verdi, Convergence past singularities for a fully discrete approximation of curvature driven interfaces, submitted to SIAM J. Numer. Anal.

    Google Scholar 

  26. S. Osher and J. Sethian, Fronts propagating with curvature dependent speed, J. Comp. Phys. 79 (1988) 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Roberts, A line element algorithm for curve flow problems in the plane, J. Austral. Math. Soc. Ser. B 35 (1993) 244–261.

    Article  MathSciNet  MATH  Google Scholar 

  28. A.R. Roosen, Crystalline curvature and flat flow in a diffusion field, preprint.

    Google Scholar 

  29. A.R. Roosen and J. Taylor, Simulation of crystal growth with faceted interfaces, in Mater. Res. Soc. Symposium Proceedings Vol. 237 (1992) 25–36.

    Article  Google Scholar 

  30. A.R. Roosen and J. Taylor, Modeling crystal growth in a diffusion field using fully faceted interfaces, J. Comp. Phys. 114 (1994) 113–128.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Sethian, A review of recent numerical algorithms for hypersurfaces moving with curvature-dependent speed, J. Diff. Geom. 31 (1990) 131–161

    MathSciNet  MATH  Google Scholar 

  32. H.M. Soner, Ginzburg-Landau equation and motion by mean curvature, I. Convergence; II. Arbitrary initial data, J. Geom. Anal., in press.

    Google Scholar 

  33. J.E. Taylor, Constructions and conjectures in crystalline nondifferential geometry, in Differential Geometry, Pitman Monographs Surveys Pure Appl. Math. 52, Longman Scientific (1991) 321–336.

    Google Scholar 

  34. J.E. Taylor, Motion by crystalline curvature, in Computing Optimal Geometries, J.E. Taylor, ed., Selected Lectures in Mathematics, Amer. Math. Soc, Providence (1991) 63ff.

    Google Scholar 

  35. J.E. Taylor, Mean curvature and weighted mean curvature, Acta Metall, et Mater. 40 (1992) 1475–1485.

    Article  Google Scholar 

  36. J.E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points, in Differential Geometry, R. Greene and S.T. Yau, eds., Proc. Symp. Pure Math. Vol. 54, Amer. Math. Soc. (1993) 417–438.

    Google Scholar 

  37. J.E. Taylor, J. Cahn, and C. Handwerker, Geometric models of crystal growth, Acta Metall, et Mater. 40 (1992) 1443–1474.

    Article  Google Scholar 

  38. A.R. Umantsev, V.V. Vinogradov, and V.T. Borisov, Modeling the evolution of a dendritic structure, Sov. Phys. Crystallogr. 31 no. 5 (1986) 596–599.

    Google Scholar 

  39. N.J. Walkington, Algorithms for computing motion by mean curvature, SIAM J. Numer. Anal., in press.

    Google Scholar 

  40. A.A. Wheeler, W.J. Boettinger, and G.B. McFadden, Phase field model for isothermal phase transitions in binary alloys, Phys. Rev. A 45 (1992), 7424–7439.

    Article  Google Scholar 

  41. A.A. Wheeler, B.T. Murray, and R.J. Schaefer, Computation of dendrites using a phase field model, Physica D 66 (1993) 243–262.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Girão, P.M., Kohn, R.V. (1996). The Crystalline Algorithm for Computing Motion by Curvature. In: Serapioni, R., Tomarelli, F. (eds) Variational Methods for Discontinuous Structures. Progress in Nonlinear Differential Equations and Their Applications, vol 25. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9244-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9244-5_2

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9959-8

  • Online ISBN: 978-3-0348-9244-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics