Skip to main content

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 25))

Abstract

To understand the role played by the complex microstructural arrangements in a giant magnetostrictive material, we were led to develop a micromagnetic theory where equilibria are described by the oscillatory statistics of approximating or minimizing sequences of a variational principle. The issues we encountered and the effectiveness of the theory are discussed in the context of experiment and simulation. Predictions based on the theory may be used to offer specific recommendation for improvement of actuator and sensor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Jiboory, M. and Lord, D.G., Study of the magnetostrictive distortion in single crystal terfenol-D by x-ray diffraction, IEEE Trans Mag 26, 2583–2585.

    Google Scholar 

  2. Al-Jiboory, M. and Lord, D.G., Bi, Y.J., Abell, J. S., and Hwang, A.M.H., and Teter, J.P., Magnetic domains and microstructural defects in Terfenol-D, J. Appl. Phys. (to appear).

    Google Scholar 

  3. Ball, J. M., Chu, C, and James, R. D., Metastability and hysteresis in elastic crystals (to appear).

    Google Scholar 

  4. Brown, W.F., 1966, Magnetoelastic Interactions, Vol. 9 of Springer Tracts in Natural Philosophy (ed. C. Truesdell), Springer-Verlag.

    Google Scholar 

  5. Bruno, O., Leo, P., and Shields, T., Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires, Acta Met. Mat., 5, 191–201.

    Google Scholar 

  6. Chipot, M., Kinderlehrer, D., and Ma, L., to appear.

    Google Scholar 

  7. Clark, A. E., 1980, Magnetostrictive rare earth — Fe2 compounds, Ferromagnetic Materials, Vol 1 (Wohlfarth, E. P. ed) North Holland, 532–589.

    Google Scholar 

  8. Clark, A. E., 1992, High power rare earth magnetostrictive materials, Recent Advances in Adaptive and Sensory Materials, (Rogers, C.A.. and Rogers, R.C., eds), Technomic, 387–397.

    Google Scholar 

  9. Clark, A. E., Teter, J. P., and Mc Masters, O. D., 1988, Magnetostriction ‘jumps’ in twinned Tb0.3Dy0.7Fe1.9, J. Appl. Phys., 63, 3910–3912.

    Article  Google Scholar 

  10. Clark, A. E., Verhoven, J. D., Mc Masters, O. D., and Gibson, E. D., 1986, Magnetostriction of twinned [112] crystals of Tb.27Dy.73Fe2, IEEE Trans Mag. 22, 973–975.

    Article  Google Scholar 

  11. De Simone, A., The effect of applied loads on the magnetostrictivie response of a terfenol-D-type material: a micromagnetic analysis, (to appear).

    Google Scholar 

  12. De Simone, A., 1993, Energy minimizers for large ferromagnetic bodies, Arch. Rat. Mech. Anal, 125, 99–144.

    Article  MATH  Google Scholar 

  13. De Simone, A., 1994, Magnetization and magnetostrictive curves from micromag-netics, J. Appl. Phys., 76, 7018–7020.

    Article  Google Scholar 

  14. De Simone, A., 1994, Macroscopic response of magnetostrictive materials to applied magnetic fields and loads, Proc. SPIE vol. 2192, (Banks, H.T., ed.), 2–11.

    Google Scholar 

  15. Dooley, J. and De Graef, M., TEM study of twinning and magnetic domains in Terfenol D (to appear).

    Google Scholar 

  16. Ericksen, J.L., 1987, Twinning of crystals I, Metastability and Incompletely Posed Problems, IMA Vol. Math. Appl. 3, (Antman, S., Ericksen, J.L., Kinderlehrer, D., Müller, I., eds) Springer, 77–96.

    Google Scholar 

  17. Ericksen, J.L., 1991, On kinematic conditions of compatibility, J. Elas. 26, 65–74.

    Article  MathSciNet  MATH  Google Scholar 

  18. Giles, R., et al., 1992, Micromagnetics of thin film cobalt-based media for magnetic recording, Comp, in Phys., 6, 53–70.

    Article  Google Scholar 

  19. James, R. D. and Kinderlehrer, D., 1990, An example of frustration in a ferromagnetic material, Nematics: Mathematical and Physical Aspects, (Coron, J.-M., Ghidaglia, J.-M., and Hélein, F., eds), Kluwer NATO ASI series, 201–222.

    Google Scholar 

  20. James, R. D. and Kinderlehrer, D., 1990, Frustration in ferromagnetic materials, Cont. Mech. Therm., 2, 215–239.

    Article  MathSciNet  Google Scholar 

  21. James, R. D. and Kinderlehrer, D., 1992, Frustration and microstructure: an example in magnetostriction, Prog Part Diff Eqns: calculus of variations, applications (Bandle, C. et. al., eds) Pitman Res Notes Math 267, 59–81.

    Google Scholar 

  22. James, R. D. and Kinderlehrer, D., 1992, Twinned structures in terfenol, Proc. ICOMAT-92, Wayman, M. and Perkins, J., eds), 269–274.

    Google Scholar 

  23. James, R. D. and Kinderlehrer, D., 1993, A theory of magnetostriction with application to TbDyFe2 Phil. Mag. B, 68, 237–274.

    Google Scholar 

  24. James, R. D. and Kinderlehrer, D., 1993, Mathematical approaches to the study of smart materials, Mathematics in Smart Structures, Smart Structures and Materials′93, Proceedings SPIE vol. 1919, (Banks, H. T., ed.) 2–18.

    Google Scholar 

  25. James, R. D. and Kinderlehrer, D., Laminate structures in martensite (to appear).

    Google Scholar 

  26. James, R. D. and Kinderlehrer, D., 1994, Theory of magnetostriction with application to Terfenol-D, J. Appl. Phys., 76, 7012–7014.

    Article  Google Scholar 

  27. Kinderlehrer, D., and Ma, L., 1994, Computational hysteresis in modeling magnetic systems, IEEE Trans. Mag., 30.6, 4380–4382.

    Google Scholar 

  28. Kinderlehrer, D., and Ma, L., 1994, Simulation of hysteresis in nonlinear systems, Math, and Control in Smart Structures, Proc. SPIE vol. 2192, (Banks, H.T., ed.), 78–87.

    Google Scholar 

  29. Kinderlehrer, D., and Ma, L., The hysteretic event in the computation of magnetism and magnetostriction, Proc. Nonlinear Diff. Eqns. and their Appl., College de France Sem, Brezis, H. and Lions, J.-L., eds., (to appear).

    Google Scholar 

  30. Kinderlehrer, D., and Ma, L., The hysteretic event in the computation of magnetization (to appear).

    Google Scholar 

  31. Luskin, M. and Ma, L., 1992, Analysis of the finite element approximation of microstructure in micromagnetics, SIAM J. Num Anal., 29, 320–331.

    Article  MathSciNet  MATH  Google Scholar 

  32. Luskin, M. and Ma, L., 1993, Numerical optimization of the micromagnetics energy, Mathematics in Smart Structures, Smart Structures and Materials’93, Proceedings SPIE vol. 1919, (Banks, H. T., ed.) 19–29.

    Chapter  Google Scholar 

  33. Ma, L., 1993, Computation of magnetostrictive materials, Mathematics in Smart Structures, Smart Structures and Materials′93, Proceedings SPIE vol. 1919, (Banks, H. T., ed.) 47–54.

    Google Scholar 

  34. Ma, L. and Walkington, N., On algorithms for nonconvex optimization, to appear.

    Google Scholar 

  35. Müller, I. and Xu, H., 1991, On the pseudoelastic hysteresis, Acta Metall., 39, 263–271.

    Article  Google Scholar 

  36. Ortin, J., 1992, Preisach modeling of hysteresis for a pseudoelastic Cu-Zn-Al single crystal, J. Appl. Phys., 71, 1454–1461.

    Article  Google Scholar 

  37. Pedregal, P., 1994, Relaxation in ferromagnetism: the rigid case, J. Non. Sci., 4, 105–125.

    Article  MathSciNet  MATH  Google Scholar 

  38. Rogers, R. C, 1991, A nonlocal model for the exchange energy in ferromagnetic materials, J. Int. Eqns. Appl., 3, 85–127.

    Article  MATH  Google Scholar 

  39. Shield, T., Orientation dependence of the pseudoelastic behavior of single crystals of Cu-Al-Ni in tension (to appear).

    Google Scholar 

  40. Stoner, E. C. and Wohlfarth, E. P., 1948, A mechanism of magnetic hysteresis in heterogeneous alloys, Phil. Trans. Royal Soc. (London) Sect. A, 240, 599–642.

    Article  MATH  Google Scholar 

  41. Tartar, L., 1979, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot Watt Symposium, Vol I V (Knops, R., ed.) Pitman Res. Notes in Math. 39, 136–212.

    Google Scholar 

  42. Teter, J.P., Mahoney, K., Al-Jiboory, M., Lord, D., and McMasters, O.D., 1991, Domain observation and magnetostriction in TbDyFe twinned single crystals, J. Appl. Phys., 69, 5768–5770.

    Article  Google Scholar 

  43. Toupin, R., 1956, The elastic dielectric, J. Rat. Mech. Anal., 5, 849–915.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Kinderlehrer, D. (1996). Magnetoelastic Interactions. In: Serapioni, R., Tomarelli, F. (eds) Variational Methods for Discontinuous Structures. Progress in Nonlinear Differential Equations and Their Applications, vol 25. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9244-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9244-5_17

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9959-8

  • Online ISBN: 978-3-0348-9244-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics