Skip to main content

Abstract

The assumption of incompressibility brings about a considerable simplification in finite elastostatics for homogeneous isotropic solids.1 Most notably, it affords a set of closed form solutions, called controllable or universal deformations, which are independent of material properties and thus are possible in all incompressible materials. Solutions of this type were first discovered by Rivlin [1–4] and later by others [5–9]. They include torsion of cylinders, bending or straightening of blocks and cylindrical sectors, and inflation or eversion of hollow cylinders and spheres. Some related controllable or universal motions have been discussed [10–13] and all of these results have been extended to include inelastic response [14, 15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. S. Rivlin, Large elastic deformations of isotropic materials. IV. Further developments of the general theory, Phil. Trans. Roy. Soc. A241, 379 (1948).

    MathSciNet  Google Scholar 

  2. R. S. Rivlin, A note on the torsion of an incompressible highly-elastic cylinder, Proc. Cambridge Phil. Soc. 45, 485 (1948).

    Article  MathSciNet  Google Scholar 

  3. R. S. Rivlin, Large elastic deformation of isotropic materials. V. The problem of flexure, Proc. Roy. Soc. London A195, 463 (1949).

    MathSciNet  Google Scholar 

  4. R. S. Rivlin, Large elastic deformation of isotropic materials. VI. Further results in the theory of torsion, shear and flexure, Phil. Trans. Roy. Soc. London A242, 173 (1949).

    MathSciNet  Google Scholar 

  5. A. E. Green and R. T. Shield, Finite elastic deformations in incompressible isotropic bodies, Proc. Roy. Soc. London A202, 407 (1950).

    MathSciNet  Google Scholar 

  6. J. L. Ericksen, Deformations possible in every isotropic, incompressible, perfectly elastic body, Z. angew. Math. Phys. 5, 466 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. L. Ericksen, Inversion of a perfectly elastic spherical shell, Z. angew Math. Mech. 35, 382 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  8. W. W. Klingbeil and R. T. Shield, On a class of solutions in plane finite elasticity, Z. angew Math. Phys. 17, 489 (1966).

    Article  MathSciNet  Google Scholar 

  9. M. Singh and A. C. Pipkin, Note on Ericksen’s problem, Z. angew Math. Phys. 16, 706 (1965).

    Article  Google Scholar 

  10. J. A. Knowles, Large amplitude oscillations of a tube of incompressible elastic material, Q. Appl. Math. 18, 71 (1960).

    MathSciNet  MATH  Google Scholar 

  11. J. A. Knowles, On a class of oscillations in the finite-deformation theory of elasticity, J. Appl. Math. 29, 283 (1962).

    MathSciNet  MATH  Google Scholar 

  12. Z.-H. Guo and R. Solecki, Free and forced finite-amplitude oscillations of an elastic thick-walled hollow sphere made of incompressible material, Arch. Mech. Stosow. 15, 427 (1963).

    MathSciNet  MATH  Google Scholar 

  13. C. A. Truesdell, Solutio generalis et accurata problematum quamplurimorum de motu corporum elasticorum incomprimibilium in deformationibus valde magnis, Arch. Rat. Mech. Anal. 11, 106 (1962).

    Article  MathSciNet  Google Scholar 

  14. M. M. Carroll, Controllable deformations of incompressible simple materials, Int. J. Engng. Sci. 5, 515–525 (1967).

    Article  Google Scholar 

  15. R. L. Fosdick, Dynamically possible motions of incompressible, isotropic, simple materials, Arch. Rational Mech. Anal. 29, 272 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. L. Ericksen, Deformations possible in every compressible, isotropic perfectly elastic material, J. Math, and Phys. 34, 126 (1955).

    MathSciNet  Google Scholar 

  17. M. M. Carroll, Finite strain solutions in compressible isotropic elasticity, J. Elasticity 20, 65 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. M. Carroll, Controllable deformations for special classes of compressible elastic solids, SAACM 1, 309 (1991).

    Google Scholar 

  19. M. M. Carroll, Controllable deformations in compressible finite elasticity, SAACM 1, 373 (1991).

    Google Scholar 

  20. F. John, Plane strain problems for a perfectly elastic material of harmonic type, Comm. Pure Appl. Math. 13, 239 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  21. R. W. Ogden and D. A. Isherwood, Solution of some finte plane-strain problems for compressible elastic solids, Q. J. Mech. Appl. Math. 31, 219 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Abeyaratne and C. O. Horgan, The pressurized hollow sphere problem in finite elastostatics for a class of compressible materials, Int. J. Solids Struct. 20, 715 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  23. P. K. Currie and M. Hayes, On non-universal finite elastic deformations, in Finite Elasticity (D. E. Carlson and R. T. Shield, eds.), p. 143, Martinus Nijhoff 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to my colleague, mentor, and friend, Paul M. Naghdi, on his 70th birthday with much gratitude, deep affection, and highest regard

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Carroll, M.M., Brown, G.R. (1995). On obtaining closed form solutions for compressible nonlinearly elastic materials. In: Casey, J., Crochet, M.J. (eds) Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9229-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9229-2_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9954-3

  • Online ISBN: 978-3-0348-9229-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics