Skip to main content

Abstract

Analytic solutions to a wide variety of boundary-value problems in nonlinear elastostatics for incompressible materials have been obtained in the literature. Comparable results for compressible materials have not been obtained. Of course, the main difficulty is the-absence of the simplified kinematics arising from the incompressibility constraint. Some progress in the analytic solution of boundary-value problems for certain classes of compressible materials has taken place in recent years (see e.g. the references listed below). The present paper is concerned with further developments in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abeyaratne and C. O. Horgan, The pressurized hollow sphere problem infinite elastostatics for a class of compressible materials. Int. J. Solids Struct. 20, 715–723 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Abeyaratne and C. O. Horgan, Initiation of localized plane deformations at a circular cavity in an infinite compressible nonlinearly elastic medium. J. Elasticity 15, 243–256 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Armanni, Sulle deformazione finite dei solidi elastici isotropi. II Nuovo Cimento 10, 427–447 (1915).

    Article  Google Scholar 

  4. M. F. Beatty, Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl. Mech. Reviews 40, 1699–1734 (1987).

    Article  Google Scholar 

  5. P. J. Blatz and W. L. Ko, Application of finite elasticity to the deformation of rubbery materials. Trans. Soc. Rheol. 6, 223–251 (1962).

    Article  Google Scholar 

  6. M. M. Carroll, Finite strain solutions in compressible isotropic elasticity. J. Elasticity 20, 65–92 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. M. Carroll, Controllable deformations for special classes of compressible elastic solids. Stability and Applied Analysis of Continuous Media 1, 309–323 (1991).

    Google Scholar 

  8. M. M. Carroll and C. O. Horgan, Finite strain solutions for a compressible elastic solid. Quart. Appl. Math., 48, 767–780 (1990).

    MathSciNet  MATH  Google Scholar 

  9. D. T. Chung, C. O. Horgan and R. Abeyaratne, The finite deformation of internally pressurized hollow cylinders and spheres for a class of compressible elastic materials. Int. J. Solids Struct. 22, 1557–1570 (1986).

    Article  MATH  Google Scholar 

  10. J. L. Ericksen, Deformations possible in every compressible isotropic perfectly elastic material. J. Math. Phys. 34, 126–128 (1955).

    MathSciNet  Google Scholar 

  11. A. E. Green and J. E. Adkins, Large Elastic Deformations (2nd ed.). Oxford University Press, Oxford 1970.

    MATH  Google Scholar 

  12. D. M. Haughton, Inflation of thick-walled compressible elastic spherical shells. IMA J. Appl. Math. 39, 259–272 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. M. Hill, Cylindrical and spherical inflation in compressible finite elasticity, IMA J. Appl. Math., 50, 195–201 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  14. C. O. Horgan, Some remarks on axisymmetric solutions in finite elastostatics for compressible materials. Proc. Royal Irish Academy, 89A, 185–193 (1989).

    MathSciNet  Google Scholar 

  15. C. O. Horgan, Void nucleation and growth for compressible non-linearly elastic materials: an example. Int. J. Solids Struct. 29, 279–291 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  16. C. O. Horgan and R. Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J. Elasticity 16, 189–200 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. H. Jafari, R. Abeyaratne and C. O. Horgan, The finite deformation of a pressurized circular tube for a class of compressible materials. Z Angew. Math. Phys. 35, 227–246 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  18. F. John, Plane strain problems for a perfectly elastic material of harmonic type. Comm. Pure Appl. Math. 13, 239–296 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  19. F. John, Plane elastic waves of finite amplitude: Hadamard materials and harmonic materials. Comm. Pure Appl. Math. 19, 309–341 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  20. J. G. Murphy, Some new closed-form solutions describing spherical inflation in compressible finite elasticity. IMA J. Appl. Math., 48, 305–316 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. G. Murphy, Inflation and eversion of spherical shells of a special compressible material. J. Elasticity 30, 251–276 (1993).

    Article  MATH  Google Scholar 

  22. R. W. Ogden, Nonlinear Elastic Deformations. Wiley, New York 1984.

    MATH  Google Scholar 

  23. R. W. Ogden and D. A. Isherwood, Solution of some finite plane-strain problems for compressible elastic solids. Q. J. Mech. Appl. Math. 31, 219–249 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  24. D. A. Polignone and C. O. Horgan, Pure torsion of compressible nonlinearly elastic circular cylinders. Quart. Appl. Math. 49, 591–607 (1991).

    MathSciNet  MATH  Google Scholar 

  25. D. A. Polignone and C. O. Horgan, Axisymmetric finite anti-plane shear of compressible nonlinearly elastic circular tubes. Quart. Appl. Math. 50, 323–341 (1992).

    MathSciNet  MATH  Google Scholar 

  26. D. A. Polignone and C. O. Horgan, Pure azimuthal shear of compressible nonlinearly elastic circular tubes. Quart. Appl. Math. 52, 113–131 (1994).

    MathSciNet  MATH  Google Scholar 

  27. D. J. Steigmann, Cavitation in elastic membranes—an example. J. Elasticity, 28, 277–287 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  28. O. H. Varga, Stress-Strain Behavior of Elastic Materials. J. Wiley, New York 1966.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Paul M. Naghdi on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Horgan, C.O. (1995). On axisymmetric solutions for compressible nonlinearly elastic solids. In: Casey, J., Crochet, M.J. (eds) Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9229-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9229-2_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9954-3

  • Online ISBN: 978-3-0348-9229-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics