Skip to main content

On the advantages of a geometrical viewpoint in the derivation of Lagrange’s equations for a rigid continuum

  • Chapter
Book cover Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids

Abstract

By way of background, it may be remarked that for a body consisting of finitely many particles, several different derivations of Lagrange’s equations can be found in the dynamics literature.1 These include: derivations proceeding from Newton’s second law by an unenlightening manipulation of partial derivatives; those employing the principle of virtual work; and those appealing to variational principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. 3rd edn., University Press, Cambridge 1927.

    MATH  Google Scholar 

  2. J. L. Synge and B. A. Griffith, Principles of Mechanics. 3rd edn., McGraw Hill, Inc. 1959.

    Google Scholar 

  3. L. A. Pars, A Treatise on Analytical Dynamics. John Wiley & Sons, Inc. 1968.

    Google Scholar 

  4. D. T. Greenwood, Principles of Dynamics. 2nd edn., Prentice-Hall, Inc. 1988.

    Google Scholar 

  5. H. Goldstein, Classical Mechanics. 2nd edn., Addison-Wesley Publ. Co. 1980.

    MATH  Google Scholar 

  6. R. M. Rosenberg, Analytical Dynamics of Discrete Systems. Plenum Press 1977.

    MATH  Google Scholar 

  7. C. Lanczos, The Variational Principles of Mechanics. University of Toronto Press 1949, Dover reprint 1986.

    MATH  Google Scholar 

  8. J. L. de Lagrange, Méchanique Analitique. La Veuve Desaint, Paris 1788; See Vols. 11 and 12 of Oeuvres (edited by J.-A. Serret and G. Darboux), Gauthier-Villars et Fils, Paris 1888 and 1889, respectively, and reprinted by Georg Olms Verlag, Hildesheim and New York 1973.

    Google Scholar 

  9. C. Truesdell and R. A. Toupin, The Classical Field Theories. In S. Flügge’s Handbuch der Physik, III/1, pp. 226–858, Springer-Verlag 1960.

    Google Scholar 

  10. J. L. Synge and A. Schild, Tensor Calculus. University of Toronto Press 1949, Dover reprint 1978.

    MATH  Google Scholar 

  11. I. S. Sokolnikoff, Tensor Calculus: Theory and Applications to Geometry and Mechanics of Continua. John Wiley & Sons, Inc. 1964.

    MATH  Google Scholar 

  12. C.-C. Wang, Mathematical Principles of Mechanics and Electromagnetism (Part A). Plenum Press, New York 1979.

    MATH  Google Scholar 

  13. L. Brillouin, Tensors in Mechanics and Elasticity. Academic Press 1964.

    Google Scholar 

  14. A. J. McConnell, Applications of the Absolute Differential Calculus. Blackie Co. 1931; republished as Applications of Tensor Analysis, Dover 1957.

    MATH  Google Scholar 

  15. H. Hertz, The Principles of Mechanics Presented in a New Form (translated by D. E. Jones and J. T. Walley). The Macmillan Co. 1900, Dover reprint 1956.

    Google Scholar 

  16. G. Ricci and T. Levi-Civita, Méthodes de calcul différentiel absolu et leurs applications. Math. Ann. LIV, 125–201 (1900)

    Article  MathSciNet  Google Scholar 

  17. Tullio Levi-Civita, Opere matematiche, Vol. 1, 479–559, Nicola Zanichelli Editore, Bologna 1954.

    Google Scholar 

  18. T. Levi-Civita, The Absolute Differential Calculus. Blackie & Son Ltd 1926, Dover reprint 1977.

    Google Scholar 

  19. J. L. Synge, On the geometry of dynamics. Phil. Trans. Roy. Soc. London A226, 31–106 (1927).

    Google Scholar 

  20. J. Casey, Geometrical derivation of Lagrange’s equations for a system of particles. Am. J. Phys. 62, 836–847 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Casey, A treatment of rigid body dynamics. J. Appl. Mech. 50, 905–907 (1983)

    Article  MATH  Google Scholar 

  22. J. Casey, A treatment of rigid body dynamics. J. Appl. Mech. 51, 227 (1984).

    Article  Google Scholar 

  23. J. Casey and V. C. Lam, A tensor method for the kinematical analysis of systems of rigid bodies. Mechanism and Machine Theory 21, 87–91 (1986).

    Article  Google Scholar 

  24. J. Casey and V. C. Lam, On the relative angular velocity tensor. J. Mechanism, Trans. & Auto, in Design (Trans. ASME) 108, 399–400 (1986).

    Google Scholar 

  25. J. Casey and V. C. Lam, On the reduction of the rotational equations of rigid body dynamics. Meccanica 22, 41–42 (1987).

    Article  MATH  Google Scholar 

  26. C. Truesdell, A First Course in Rational Continuum Mechanics (Vol. 1). 2nd edn., Academic Press, Inc. 1991.

    MATH  Google Scholar 

  27. P. R. Halmos, Finite-Dimensional Vector Spaces. Springer-Verlag, New York, Inc. 1974.

    Book  MATH  Google Scholar 

  28. P. Chadwick, Continuum Mechanics, John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Paul M. Naghdi on the occasion of his 70th birthday, whose gifts as a teacher and creator of mechanics have been a source of continual inspiration

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Casey, J. (1995). On the advantages of a geometrical viewpoint in the derivation of Lagrange’s equations for a rigid continuum. In: Casey, J., Crochet, M.J. (eds) Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9229-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9229-2_41

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9954-3

  • Online ISBN: 978-3-0348-9229-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics