Skip to main content

Abstract

The need to predict supersonic and hypersonic turbulent flows of aerodynamic importance has, in recent years, led to new research initiatives in compressible turbulence modeling. A major stumbling block in the development of improved compressible turbulence models is the lack of detailed experimental data for the compressible turbulence statistics in basic high-speed flows. Experimental limitations currently make it infeasible to obtain detailed measurements of any turbulence statistics beyond the mean velocity and Reynolds shear stress in supersonic turbulent flows. This makes it virtually impossible to pinpoint the origin of deficient model predictions when they arise. In Reynolds averaged calculations of complex supersonic turbulent flows, erroneous predictions for the mean velocity field may arise from modeling errors in the Reynolds stresses that can be traced to a variety of possible deficiencies in the treatment of compressibility effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Passot and A. Pouqet, Numerical simulation of compressible homogeneous flows in the turbulent regime, J. Fluid Mech. 181, 441–446 (1987).

    Article  MATH  Google Scholar 

  2. S. K. Lele, Compressibility effects on turbulence, Annual Rev. Fluid Mech. 26, 211–254 (1994).

    Article  MathSciNet  Google Scholar 

  3. G. A. Blaisdell, N. N. Mansour and W. C. Reynolds, Compressibility effects on the growth and structure of homogeneous turbulent shear flow, J. Fluid Mech. 256, 443–485 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Sarkar, G. Erlebacher and M. Y. Hussaini, Direct simulation of compressible turbulence in a shear flow, Theoret. Comput. Fluid Dynamics 2, 291–305 (1991).

    Article  MATH  Google Scholar 

  5. S. Sarkar, G. Erlebacher and M. Y. Hussaini, Compressible homogeneous shear: Simulation and modeling, in Turbulent Shear Flows 8, pp. 249–267, Springer-Verlag, New York 1993.

    Google Scholar 

  6. C. G. Speziale and N. Mac Giolla Mhuiris, On the prediction of equilibrium states in homogeneous turbulence, J. Fluid Mech. 209, 591–615 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  7. C. G. Speziale, T. B. Gatski and N. Mac Giolla Mhuiris, A critical comparison of turbulence models for homogeneous shear flows in a rotating frame, Phys. Fluids A 2, 1678–1684 (1990).

    Article  MATH  Google Scholar 

  8. R. Abid and C. G. Speziale, Predicting equilibrium states with Reynolds stress closures in channel flow and homogeneous shear flow, Phys. Fluids A 5, 1776–1782 (1993).

    Article  MATH  Google Scholar 

  9. P. Moin, W. C. Reynolds and J. Kim, eds., Studying Turbulence Using Numerical Simulation Databases—III, Center for Turbulence Research, Stanford University 1990.

    Google Scholar 

  10. P. Moin, W. C. Reynolds and J. Kim, eds., Studying Turbulence Using Numerical Simulation Databases—IV, Center for Turbulence Research, Stanford University 1992.

    Google Scholar 

  11. B. E. Launder, G. J. Reece and W. Rodi, Progress in the development of a Reynolds stress turbulence closure, J. Fluid Mech. 68, 537–566 (1975).

    Article  MATH  Google Scholar 

  12. S. Fu, B. E. Launder and D. P. Tselepidakis, Accommodating the effects of high strain rates in modeling the pressure-strain correlation, UMIST Technical Report TFD/87/5 1987.

    Google Scholar 

  13. C. G. Speziale, S. Sarkar and T. B. Gatski, Modeling the pressure-strain correlation of turbulence: An invariant dynamical systems approach, J. Fluid Mech. 227, 245–272 (1991).

    Article  MATH  Google Scholar 

  14. S. Sarkar, G. Erlebacher, M. Y. Hussaini and H. O. Kreiss, The analysis and modeling of dilatational terms in compressible turbulence, J. Fluid Mech. 227, 473–493 (1991).

    Article  MATH  Google Scholar 

  15. S. Sarkar, The pressure-dilatation correlation in compressible flows, Phys. Fluids A 4, 2674–2682 (1992).

    Article  Google Scholar 

  16. O. Zeman, Dilatational dissipation: The concept and application in modeling compressible mixing layers, Phys. Fluids A 2, 178–188 (1990).

    Article  Google Scholar 

  17. O. Zeman, Compressible turbulent flows: Modeling and similarity considerations, in Annual Research Briefs 1990, Center for Turbulence Research, pp. 11–22 (P. Moin, W. C. Reynolds and J. Kim, eds.), Stanford University 1990.

    Google Scholar 

  18. J. O. Hinze, Turbulence, McGraw-Hill, New York 1975.

    Google Scholar 

  19. C. G. Speziale and S. Sarkar, Second-order closure models for supersonic turbulent flows, AIAA Paper No. 91–0217 1991.

    Google Scholar 

  20. O. Zeman, Toward a constitutive relation in compressible turbulence, in Studies in Turbulence, pp. 285–296 (T. B. Gatski, S. Sarkar and C. G. Speziale, eds.), Springer-Verlag, New York 1992.

    Chapter  Google Scholar 

  21. J. P. Dussauge and J. Gaviglio, The rapid expansion of a supersonic turbulent flow: Role of bulk dilatation, J. Fluid Mech. 174, 81–112 (1987).

    Article  Google Scholar 

  22. G. A. Blaisdell and O. Zeman, Investigation of the dilatational dissipation in compressible homogeneous shear flow, in Studying Turbulence Using Numerical Simulation Databases—IV, pp. 231–245 (P. Moin, W. C. Reynolds and J. Kim, eds.), Center for Turbulence Research, Stanford University 1992.

    Google Scholar 

  23. M. M. Rogers, P. Moin and W. C. Reynolds, The structure and modeling of the hydrodynamic and passive scalar fields in homogeneous turbulent shear flow, Stanford University Technical Report TF-25 1986.

    Google Scholar 

  24. M. Morkovin, Effects of compressibility on turbulent flows, in Mecanique de la Turbulence, CNRS, pp. 367–380 (A. Favre, ed.), Gordon & Breach, New York 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Paul M. Naghdi on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Speziale, C.G., Abid, R., Mansour, N.N. (1995). Evaluation of Reynolds stress turbulence closures in compressible homogeneous shear flow. In: Casey, J., Crochet, M.J. (eds) Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9229-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9229-2_37

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9954-3

  • Online ISBN: 978-3-0348-9229-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics