Skip to main content

The arthropod mushroom body: Its functional roles, evolutionary enigmas and mistaken identities

  • Chapter
Book cover The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach

Part of the book series: Experientia Supplementum ((EXS,volume 72))

Summary

Insects share the same physical environment as terrestrial vertebrates. However, insects are vastly more successful in terms of their adaptive radiation and colonization. The biomass of insects alone is said to outweigh all other organisms and it can be speculated that their evolutionary success is a consequence, not only of their environmental colonization, but also of their behavioral versatility which sets them apart from other terrestrial arthopods. If this hypothesis is correct, it might be expected that there exist neural organizations that are peculiar to, or greatly elaborated in, the Insecta alone. This chapter describes the occurrence among selected arthropods of a brain region that, in eusocial insects, reaches great complexity and is implicated in learning and memory. Its identification in various taxa is assessed against the background of current theories of arthropod evolution and brain segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D.T. (1973) Embryology and Phylogeny in Annelids and Arthropods. Pergamon Press, New York.

    Google Scholar 

  • Babu, K.S. (1965) Anatomy of the central nervous system of arachnids. Zool. Jb. Abt. Ontog. Tiere. Anat. 82: 1–154.

    Google Scholar 

  • Babu, K.S. and Barth, F.G. (1984) Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida). Zoomorphol. 104: 344–359.

    Article  Google Scholar 

  • Backhaus, W., Werner, A. and Menzel, R. (1987) Color vision in honeybees: metric, dimensions, constancy, and ecological aspects. In: R. Menzel and A. Mercer (eds): Neurobiology and Behavior of the Honeybee. Springer Verlag, Heidelberg, Berlin, New York, pp. 83–97.

    Google Scholar 

  • Ballard, J.W.O., Olsen, G.J., Faith, D.P., Odgers, W.A., Rowell, D.A. and Atkinson, P.W. (1992) Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science 258: 1345–1348.

    Article  PubMed  CAS  Google Scholar 

  • Belle, J.S. de. and Heisenberg, M. (1994) Associative learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263: 692–695.

    Article  PubMed  Google Scholar 

  • Bierbrodt, E. (1942) Der Larvenkopf von Panorpa communis L. und seine Verwandlung, mit besonderer Berücksichtigung des Gehirns und der Augen. Zool. Jb. Anai. 68: 49–136.

    Google Scholar 

  • Blinkov, S.M. and Glezer, LI. (1968) Human Brain in Figures and Tables. A Quantitative Handbook. Plenum Press, New York.

    Google Scholar 

  • Bodian, D. (1937) A new method for staining nerve fibers and nerve endings in mounted paraffin sections. Anat. Rec. 69: 153–162.

    Article  CAS  Google Scholar 

  • Böttger, O. (1910) Das Gehirn eines niederen Insektes (Lepisma saccharina L.) Jena. Z. Naturwiss. 46: 801–844.

    Google Scholar 

  • Breidbach, O. and Wegerhof T, R. (1993) Neuroanatomy of the central nervous system of the harvestman, Rilaena triangularis (Herbst 1799) (Arachnida; Opiliones) — Principal organization, GABA-like and Serotonin-immunochemistry. Zool. Anz. 230: 55–81.

    Google Scholar 

  • Bretschneider, F. (1913) Der Centralkörper und die pilzförmigen Körper im Gehirn der Insekten. Zool. Anz. 41: 560–569.

    Google Scholar 

  • Bretschneider, F. (1924) Über das Gehirn eines Bärenspinners (Callimorpha dominula, die Jungfer). Jena. Z. Naturwiss. 60: 147–173.

    Google Scholar 

  • Brownell, P.H. (1989) Neuronal organization and function in the pectinal sensory system in scorpions. Soc. Neurosci. Abstr. 15: 1289.

    Google Scholar 

  • Brownell, P.H. (1990) Structural features of ventral chemosensory organs in scorpions and solpugids suggest common evolutionary origins. Chem. Sens. 15: 547.

    Article  Google Scholar 

  • Brownell, P.H. and Farley, R.D. (1974) The organization of the malleolar sensory system in the solpugid Chanbria sp. Tissue Cell 6: 471–485.

    Article  PubMed  CAS  Google Scholar 

  • Buitkamp-Möbius, K. (1975) Strukturuntersuchungen an den Pilzkörpern im Oberschlundgan-glion von Apis mellifica-Gynandromorphen unter Berücksichtigung ihres Verhaltens. Ph.D Dissertation. Universität Bonn.

    Google Scholar 

  • Bullock, T.H. and Horridge, G.A. (1965) Structure and Function in the Nervous Systems of Invertebrates. Freeman, San Francisco, London.

    Google Scholar 

  • Burrows, M. and Laurent, G. (1989) Reflex circuits and the control of movement. In: R. Durbin, C. Miall and G. Mitchison (eds): The Computing Neuron. Addison Wesley, Wokingham, pp. 224–261.

    Google Scholar 

  • Cajal, S.R. (1909) Nota sobre la estructura de la retina de la Mosca. Trab. Lab. Invest. Biol. Univ. Madrid 7: 217–257.

    Google Scholar 

  • Cajal, S.R. and Sanchez y Sanchez, D. (1915) Contribucion al conocimiento de los centros nerviosos de los insectos. Parte I. retina y centros opticos. Trab. Lab. Invest. Biol. Univ. Madrid 13: 1–168.

    Google Scholar 

  • Campos-Ortega, J.A. and Hartenstein, V. (1985) The Embryonic Development of Drosophila melanogaster. Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Cartwright, B.A. and Collett, T.S. (1987) Landmark maps for honeybees. Biol. Cybern. 57: 85–93.

    Article  Google Scholar 

  • Christensen, T.A., Waldrop, B.R., Harrow, I.D. and Hildebrand, J.G. (1993) Local interneu-rons and information processing in the olfactory glomeruli of the moth Manduca sexta. J. Comp. Physiol. (A) 173: 385–399.

    Article  CAS  Google Scholar 

  • Collett, T.S. and Cartwright, B.A. (1983) Eidetic images in insects: their role in navigation. Trends Neurosci. 6: 101–105.

    Article  Google Scholar 

  • Collett, T.S., Fry, S.N. and Wehner, R. (1993) Sequence learning by honeybees. J. Comp. Physiol. (A) 172: 693–706.

    Google Scholar 

  • Davis, R.L. and Kauvar, L. (1984) Drosophila cyclic nucleotide phosphodiesterases. In: S. Strada and W. Thompson (eds): Advances in Nucleotide Research. Raven Press, New York, pp. 393–402.

    Google Scholar 

  • Dudai, Y., Jan, T.N., Byers, D., Quinn, W.G. and Benzer, S. (1976) Dunce, a mutant of Drosophila deficient in learning. Proc. Natl. Acad. Sci. USA 73: 1684.

    Article  Google Scholar 

  • Duerr, J.S. and Quinn, W.G. (1982) Three Drosophila mutations that block associative learning and also affect habituation and sensitization. Proc. Natl. Acad. Sci. USA 79: 3646–3650.

    Article  PubMed  CAS  Google Scholar 

  • Dujardin, F. (1850) Memoire sur le systeme nerveux des insects. Ann. Sci. Nat. Zool. 14: 195–206.

    Google Scholar 

  • Edwards, J.S., Reddy, G.R. and Rani, M.U. (1989) Central projections of a homoeotic regenerate, Antennapedia, in a stick insect, Carausius morosus (Phasmida). J. Neurobiol. 20: 101–114.

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum, H. (1993) Thinking about brain assemblies. Science 261: 993–994.

    Article  PubMed  CAS  Google Scholar 

  • Erber, J., Masuhr, T. and Menzel, R. (1980) Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol Entomol. 5: 343–358.

    Article  Google Scholar 

  • Goldschmidt, E. and Ledermann-Klein, A. (1958) Reoccurrence of a forgotten homeotic mutant in Drosophila. J. Hered. 49: 262–266.

    Google Scholar 

  • Goll, W. (1967) Strukturuntersuchungen am Gehirn von Formica. Z. Morphol. Oekol. Tiere. 59: 143–210.

    Article  Google Scholar 

  • Gronenberg, W. (1986) Physiological and anatomical properties of optical input-fibers to the mushroom body of the bee brain. J. Insect Physiol. 32: 695–704.

    Article  Google Scholar 

  • Gronenberg, W. (1987) Anatomical and physiological properties of feedback neurons of the mushroom bodies in the bee brain. Exp. Biol. 46: 115–125.

    PubMed  CAS  Google Scholar 

  • Hadenfeldt, D. (1929) Das Nervensystem von Stylochoplana maculata und Notoplana atomata. Z. wiss. Zool 133: 586–638.

    Google Scholar 

  • Hall, J.C. (1979) Control of male reproductive behavior by the central nervous system of Drosophila; dissection of a courtship pathway by genetic mosaics. Genetics 92: 437–457.

    PubMed  CAS  Google Scholar 

  • Hall, J.C. (1986) Learning and rhythms in courting mutant Drosophila. Trends Neurosci. 9: 414–418.

    Article  Google Scholar 

  • Hanesch, U., Fischbach, K.F. and Heisenberg, M. (1989) Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res. 257: 343–366.

    Article  Google Scholar 

  • Hanström, B. (1923) Further notes on the central nervous system of arachnids: scorpions, phalangids, and trap door spiders. J. Comp. Neurol. 35: 249–274.

    Article  Google Scholar 

  • Hanström, B. (1926) Das Nervensystem und die Sinnesorgane von Limulus polyphemus. Lunds Univ. Arsskr. 22: 2–78.

    Google Scholar 

  • Hanström, B. (1928) Vergleichende Anatomie des Nervensystems der Wirbellosen Tiere unter Berücksichtigung seiner Funktion. Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Hausen, K. and Egelhaaf, M. (1989) Neural mechanisms of visual course control in insects. In: G.G. Stavenga and R.C. Hardie (eds): Facets of Vision. Springer Verlag, Heidelberg, New York, Berlin, pp. 391–424.

    Google Scholar 

  • Heinrichs, S. and Fleissner, G. (1987) Neuronal components of the circadian clock in the scorpion, Androctonus australis: central origin of the efferent neurosecretory elements projecting to the median eyes. Cell Tissue Res. 250: 277–285.

    Article  Google Scholar 

  • Heisenberg, M., Borst, A., Wagner, S. and Byers, D. (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J. Neurogenetics 2: 1–30.

    Article  CAS  Google Scholar 

  • Hertel, H. (1980) Chromatic properties of identified interneurons in the optic lobes of the bee. J. Comp. Physiol. (A) 137: 215–232.

    Article  Google Scholar 

  • Hölldöbler, B. and Wilson, E.O. (1990) The Ants. Belknap, Harvard.

    Google Scholar 

  • Holmgren, N. (1916) Zur vergleichenden Anatomie des Gehirns von Polychaeten, Ony-chophoren, Xiphosuren, Arachniden, Crustaceen, Myriapoden, und Insekten. K. Svenska Vetensk Akad. Handl. 56: 1–303.

    Google Scholar 

  • Homberg, U., Christensen, T.A. and Hildebrand, J.G. (1989a) Structure and function of the deutocerebrum in insects. Annu. Rev. Entomol. 34: 477–501.

    Article  PubMed  CAS  Google Scholar 

  • Homberg, U., Montague, R.A. and Hildebrand, J.G. (1989b) Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res. 254: 255–281.

    Google Scholar 

  • Huber, F. (1960) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirns bei der Fortbewegung und der Lauterzeugung der Grillen. Z. Vergl. Physiol. 44: 60–132.

    Article  Google Scholar 

  • Ito, K. and Hotta, Y. (1992) Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev. Biol. 149: 134–148.

    Article  PubMed  CAS  Google Scholar 

  • Jawlowski, H. (1948) Studies on the insect brain. Ann. Univ. M. Curie-Sklodowska (C) 3: 1–37.

    Google Scholar 

  • Jawlowski, H. (1958) Nerve tracts in bee (Apis mellifica) running from the sight and antennal organs to the brain. Ann. Univ. M. Curie-Sklodow ska (C) 12: 307–323.

    Google Scholar 

  • Kaiser, K. (1993) Second generation enhancer traps. Current Biol. 8: 560–562.

    Article  Google Scholar 

  • Kanzaki, R., Arbas, E.A. and Hildebrand, J.G. (1991) Physiology and morphology of protocerebral olfactory neurons in the male moth Manduca sexta. J. Comp. Physiol. (A) 168: 281–298.

    Article  CAS  Google Scholar 

  • Kenyon F.C. (1896a) The brain of the bee. A preliminary contribution to the morphology of the nervous system of the Arthropoda. J. Comp. Neurol. 6: 133–210.

    Article  Google Scholar 

  • Kenyon, F.C. (1896b) The meaning and structure of the so-called “mushroom bodies” of the hexapod brain. Amer. Nat. 30: 643–650.

    Article  Google Scholar 

  • Krizeneky, J. (1913) Über Restitutionseerscheinungen an Stelle von Augen bei Tenebrion-Larven nach Zerstöung der optischen Ganglien. Arch. Entwickl. Mech. Org. 37: 629–634.

    Article  Google Scholar 

  • Kukalova-Peck, J. (1991) The “Uniramia” do not exist: the ground plan of the Pterygota as revealed by Permian Diaphanopterodea from Russia (Insecta: Paleodictyopteroidea). Can. J. Zool. 70: 236–255.

    Article  Google Scholar 

  • Land, M.F. and Barth, F.G. (1992) The quality of vision in the ctenid spider Cupiennius salei. J. Exp. Biol. 164: 227–242.

    Google Scholar 

  • Lehrer, M., Srinivasan, M.V., Zhang, S.W. and Horridge, G.A. (1988) Motion cues provide the bee’s visual world with a third dimension. Nature 332: 356–357.

    Article  Google Scholar 

  • Leonard, B. and McNaughton, B.L. (1990) In: R.P. Kesner and D.S. Olton (eds): Neurobiology of Comparative Cognition. Lawrence Erlbaum Associates, Hillsdale, New Jersey, pp. 348–363.

    Google Scholar 

  • Maddison, W.P. and Maddison, D.R. (1992) MacClade, Version 3. Analysis of Phytogeny and Character Evolution. Sinauer Association Inc., Sunderland.

    Google Scholar 

  • Mane-Garzon, F. (1973) Un nuevo tipo de Hirudinae Colombobdella ringueleti n. gen. n. sp. parasito de una tortuga de Colombia. Trab. V. Congr. Latinamerica Zoologica. 1: 129–137.

    Google Scholar 

  • Manton, S.M. (1964) Mandibular mechanisms and the evolution of arthropods. Phil. Trans. R. Soc. Lond. B 247: 1–183.

    Article  Google Scholar 

  • Manton, S.M. (1973) Arthropod phylogeny — a modern synthesis. J. Zool. 171: 111–130.

    Article  Google Scholar 

  • Manton, S.M. (1977) The Arthropoda: Habits, Functional Morphology, and Evolution. Clarendon, Oxford.

    Google Scholar 

  • Mauelshagen, J. (1993) Neural correlates of olfactory learning paradigms in an identified neuron in the honey bee brain. J. Neurophysiol 69: 609–625.

    PubMed  CAS  Google Scholar 

  • Mellon, De F., Alones, V. and Lawrence, M.D. (1992) Anatomy and fine structure of neurons in the deutocerebral projection pathway of the crayfish olfactory system. J. Comp. Neurol. 321:93–111.

    Article  PubMed  Google Scholar 

  • Menzel, R., Ventura, D.F., Hertel, H., de Souza, J. and Greggers, U. (1986) Spectral sensitivity of photoreceptors in insect compound eyes: comparisons of species and methods. J. Comp. Physiol. (A) 158: 165–177.

    Article  Google Scholar 

  • Mizunami, M., Weibrecht, J.M. and Strausfeld, N.J. (1993) A new role for the insect mushroom bodies: place memory and motor control. In: R.D. Beer, R. Ritzmann and T. McKenna (eds): Biological Neural Networks in Invertebrate Neuroethology and Robotics. Academic Press, Cambridge, pp. 199–225.

    Google Scholar 

  • Mobbs, P.G. (1982) The brain of the honeybee Apis mellifem. 1. the connections and spatial organizations of the mushroom bodies. Phil. Trans. R. Soc. Lond. B 298: 309–354.

    Article  Google Scholar 

  • Neder, R. (1959) Allometrisches Wachstum von Hirnteilen bei drei verschiedenen größen Schabenarten. Zool. Jb. Anat. 4: 411–464.

    Google Scholar 

  • Nighorn, A., Healy, M.J. and, Davis R.L. (1991) The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is concentrated in the mushroom body neuropil. Neuron 6: 455–467.

    Article  PubMed  CAS  Google Scholar 

  • O’Carroll, D. (1993) Feature-detecting neurons in dragonflies. Nature 362: 541–542.

    Article  Google Scholar 

  • O’Keefe, J. and Nadel, L. (1978) The Hippocampus as a Cognitive Map. Clarendon, Oxford.

    Google Scholar 

  • Pandazis, G. (1930) Über die relative Ausbildung der Gehirnzentren bei biologisch verschiedenen Ameisenarten. Z. Morph. Ökol. Tiere 18: 114–169.

    Article  Google Scholar 

  • Paulus, H.F. (1979) Eye structure and the monophyly of the Arthropoda. In: A.P. Gupta (ed.): Comparative Insect Morphology and Arthopod Phylogeny. van Nostrand Reinhold, New York, pp. 299–383.

    Google Scholar 

  • Pearson, L. (1971) The corpora pedunculata of Sphinx ligustri L. and other Lepidoptera: an anatomical study. Phil. Trans. R. Soc. Lond. B 259: 477–516.

    Article  Google Scholar 

  • Pflugfelder, O. (1937) Vergleichende-anatomische, experimentelle, und embryologische Untersuchungen über das Nervensystem und die Sinnesorgane der Rhynchoten. Zoologica. Stuttgart. 34: 1–102.

    Google Scholar 

  • Power, M.E. (1943) The brain of Drosophila melanogaster. J. Morph. 72: 517–559.

    Article  Google Scholar 

  • Power, M.E. (1946) The antennal centers and their connections within the brain of Drosophila melanogaster. J. Comp. Neurol. 85: 485–517.

    Article  CAS  Google Scholar 

  • Prokop, A., Barleben, F., Fischbach, K.-F. and Technau, G.M. (1991) The mushroom body defect gene affects proliferation behavior of postembryonic neuroblasts. In: N. Eisner and H. Penzlin (eds): Synapse, Transmission, Modulation. Thieme Verlag, Stuttgart, p. 544.

    Google Scholar 

  • Rempel, J.G. (1975) The evolution of the insect head: the endless dispute. Quaest. Entomol. 11: 7–25.

    Google Scholar 

  • Retzius, G. (1895) Das sensible Nervensystem des Crustaceen. Biol. Untersuchungen. Neue Folge 7: 12–18.

    Google Scholar 

  • Richardson, L.R. (1969) The family Ozobranchidae redefined, and novel ozobranchiform leech from Murray River turtles. Proc. Linn. Soc. N.S.W. 94: 61–80.

    Google Scholar 

  • Robison, R.A. (1990) Earliest-known uniramous arthropod. Nature 343: 163.

    Article  Google Scholar 

  • Rohrschneider, I. (1968) Beitrag zur Entwicklung des Vorderkopfes und der Mundregion von Periplaneta americana. Zool. Jb. Anat. 85: 537–578.

    Google Scholar 

  • Rybak, J. and Menzel, R. (1993) Anatomy of the mushroom bodies in the honey bee brain: the neuronal connections of the alpha-lobe. J. Comp. Neurol. 334: 444–465.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez y Sanchez, D. (1933) Contribution a la connaissance de la structure des corps fongiformes (calices) et leurs pédicules chez la blatte commune (Stylopyga (Blatta) orientalis). Trab. Lab. Invest. Biol. Univ. Madr. 28: 149–185.

    Google Scholar 

  • Sanchez y Sanchez, D. (1937) Sur le centre antenno-moteur ou antennaire postérieur de l’abeille. Trav. Lab. Rech. Univ. Madr. 31: 245–269.

    Google Scholar 

  • Sanchez y Sanchez, D. (1940) Contribution à la connaisance des centres nerveux des abeilles (Apis mellifica). Trab. Lab. Inst. Cajal Invest. Biol. 32: 123–210.

    Google Scholar 

  • Sandeman, D.C. and Luff, S.E. (1974) Regeneration of the antennules in the Australian fresh water crayfish, Cherax destructor. J. Neurobiol. 5: 475–488.

    Article  CAS  Google Scholar 

  • Sawyer, R.T. (1984) Arthropodization in the Hirudinae: evidence for a phylogenetic link with insects and other Uniramia? Zoll. J. linn. Soc. 80: 303–322.

    Article  Google Scholar 

  • Schäfer, S. and Bicker, G. (1986) Distribution of GABA-like immunoreactivity in the brain of the honeybee. J. Comp. Neurol. 246: 287–300.

    Article  PubMed  Google Scholar 

  • Schäfer, S. and Rehder, V. (1989) Dopamine-like immunoreactivity in the brain and sub-oesophageal ganglion of the honeybee. J. Comp. Neurol. 280: 43–58.

    Article  PubMed  Google Scholar 

  • Schäfer, S., Bicker, G., Ottersen, O.P. and Storm-Mathisen, J. (1988) Taurine-like immunoreactivity in the brain of the honeybee. J. Comp. Neurol. 265: 60–70.

    Article  Google Scholar 

  • Schmidt-Ott, U. and Technau, G.M. (1992) Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven segment remnants. Development 116: 111–125.

    PubMed  CAS  Google Scholar 

  • Schürmann, F.W. (1973) Über die Struktur der Pilzkörper des Insektengehirns. III. Die Anatomie der Nervenfasern in der Corpora pedunculata bei Acheta domesticus L. (Orthoptera): eine Golgi-Studie. Z. Zellforsch. Mikr. Anat. 145: 247–285.

    Article  Google Scholar 

  • Schürmann, F.W. (1987) The architecture of the mushroom bodies and related neuropils in the insect brain. In: A.P. Gupta (ed.): Arthropod Brain. Wiley Interscience, New York, pp 231–264.

    Google Scholar 

  • Sharov, A.G. (1966) Basic Arthropodan Stock with Special Reference to Insects. Pergamon Press, New York, Oxford.

    Google Scholar 

  • Shepherd, G.M. (1992) Modules for molecules. Nature 358: 457–456.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E.L. (1988) Morphology and Evolution of the Hexapod Head. Proc. 18th Cong. Entomol. 18: 81.

    Google Scholar 

  • Snodgrass, R.E. (1938) Evolution of the Annelida, Onychophora, and Arthropoda. Smiths. Misc. Coll. 97: 1–159.

    Google Scholar 

  • Stocker, R.F. and Lawrence, P.A. (1981) Sensory projections from normal and homoeotically ‘transformed antennae in Drosophila. Dev. Biol. 82: 224–237.

    CAS  Google Scholar 

  • Strausfeld, N.J. (1976) Atlas of an Insect Brain. Springer Verlag, Heidelberg, Berlin, New York.

    Google Scholar 

  • Strausfeld, N.J. and Bacon, J.P. (1983) Multimodal convergence in the central nervous system of dipterous insects. Fortschr. Zool. 28: 47–76.

    Google Scholar 

  • Strausfeld, N.J. and Barth, F.G. (1993) Two visual systems in one brain: neuropils serving the secondary eyes of the spider. Cupiennius salei J. Comp. Neurol. 328: 43–62.

    Article  CAS  Google Scholar 

  • Strausfeld, N.J. and Gronenberg, W. (1990) Descending neurons supplying the neck and flight motor of Diptera: organization and neuroanatomical relationships with visual pathways. J. Comp. Neurol 302: 954–972.

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld, N.J. and Lee, J.K. (1991) Neuronal basis for parallel visual processing in the fly. Vis. Neurosci. 7: 13–33.

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld, N.J., Welzien, P. and Barth, F.G. (1993) Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. J. Comp. Neurol. 328: 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D.L. (1991) PA UP: Phylogenetic analysis using parsimony. Version 3.0q. Illinois Natural History Survey, Champagne, Illinois.

    Google Scholar 

  • Tiegs, O.O. and Manton, S.M. (1958) The evolution of the Arthropoda. Biol. Rev. 33: 255–337.

    Article  Google Scholar 

  • Tinbergen, N. (1935) Über die Orientierung des Bienenwolfes (Philanthus triangulum Fabr.). Z. vergL Physiol 21: 699–716.

    Article  Google Scholar 

  • Tully, T. and Quinn, W.G. (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A 157: 263–277.

    Article  PubMed  CAS  Google Scholar 

  • Viallanes, H. (1887a) Études histologiques et organologiques sur les centres nerveux et les organes des sens animaux articulés. 4. Le cerveau de la guêpe (Vespa crabro et V. vulgaris). Ann. Sei. nat. (Zool) 2: 5–100.

    Google Scholar 

  • Viallanes, H. (1887b) Études histologiques et organologiques sur les centres nerveux et les organes des sens des animaux articulés. Cinquième mémoire. Le cerveau du criquet (Oedipoda coerulescence et Caloptenys italicus). Ann. Sci. nat. (Zool) 4: 1–98.

    Google Scholar 

  • Vigier, P. (1908) Sur l’existence réelle et le rôle des appendices piriformes des neurones. La neurone périoptique des Diptères. C. R. Soc. Biol. 64: 959–961.

    Google Scholar 

  • Vilinsky, L, Hansen, L.C., Kloppenburg, P., Yang, M.Y., Armstrong, J.D., Kaiser, K. and Strausfeld, N.J. (1994). The comparative organization of insect brain centers involved in learning, memory, and motor control. Soc. Neurosci. Abstr. 20: 816.

    Google Scholar 

  • Vowles, D.M. (1955) The structure and connections of the corpora pedunculata in bees and ants. Q. J. Microsc. Sei. 96: 239–255.

    Google Scholar 

  • Wada, S. (1966a) Topographie der Anlagenkomplexe der Cephalregion von Tachyeines (Saltatoria) bein Keimstreif. Naturwiss. 53: 414.

    Article  PubMed  CAS  Google Scholar 

  • Wada, S. (1966b) Analyse der Kopf-Hals-region von Tachycines (Saltatoria) im morphogenetische Einheiten. II. Mitteilung: Experimentell-teratologische Befunde am Kopfskelett mit Berücksichtigung des zentralen Nervensystems. Zool. Jb. Anat. 83: 235–326.

    Google Scholar 

  • Wagner, H. (1986) Flight performance and visual control of flight of the free-flying housefly (Musca domesticd). II. Pursuit of targets. Phil. Trans. Roy. Soc. Lond. B 312: 527–551.

    Article  Google Scholar 

  • Wahdepuhl, M. (1983) Control of grasshopper singing behavior by the brain: responses to electrical stimulation. Z. Tierpsychol. 63: 173–200.

    Article  Google Scholar 

  • Weygoldt, P. (1979) Significance of later embryonic stages and head development in arthropod phylogeny. In: A.P. Gupta (ed.): Arthropod Phylogeny. Van Nostrand Reinhold. New York, pp. 107–135.

    Google Scholar 

  • Wheeler, W.C., Cartwright, P. and Hayashi, C.Y. (1993) Arthropod phylogeny: a combined approach. Cladistics 9: 1–39.

    Article  Google Scholar 

  • Williams, J.L.D. (1975) Anatomical studies of the insect central nervous system: A ground-plan of the midbrain and an introduction to the central complex of the locust, Schistocerca gregaria (Orthoptera). J. Zool. Lond. 176: 67–86.

    Article  Google Scholar 

  • Wilson, M.A. and McNaughton, B.L. (1993) Dynamics of the hippocampal ensemble code for space. Science 261: 1055–1058.

    Article  PubMed  CAS  Google Scholar 

  • Witthöft, W. (1967) Absolute Anzahl und Verteilung der Zellen im Hirn der Honigbiene. Z. Morph. Tiere. 61: 160–184.

    Article  Google Scholar 

  • Zacharias, D., Williams, J.L.D., Meier, T. and Reichert, H. (1993) Neurogenesis in the insect brain: cellular identification and molecular characterization of brain neuroblasts in grasshopper embryo. Development 118: 941–955.

    CAS  Google Scholar 

  • Zawarzin, A.A. (1913) Histologische Studien über Insekten. IV. Die optischen Ganglien der Aeschna-larven. Z. Wiss. Zool. 108: 175–257.

    Google Scholar 

  • Zhang, S.W. and Horridge, G.A. (1992) Pattern recognition in bees: size of regions in spatial layout. Phil. Trans. Roy. Soc. Lond. B 337: 65–71.

    Article  Google Scholar 

  • Zhang, S.W., Srinivasan, M.V. and Horridge, G.A. (1992) Pattern recognition in honeybees: local and global analysis. Phil. Trans. Roy. Soc. Lond. B 248: 55–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Strausfeld, N.J., Buschbeck, E.K., Gomez, R.S. (1995). The arthropod mushroom body: Its functional roles, evolutionary enigmas and mistaken identities. In: Breidbach, O., Kutsch, W. (eds) The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. Experientia Supplementum, vol 72. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9219-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9219-3_16

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9949-9

  • Online ISBN: 978-3-0348-9219-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics