Skip to main content

The tangent space in sub-Riemannian geometry

  • Chapter
Book cover Sub-Riemannian Geometry

Part of the book series: Progress in Mathematics ((PM,volume 144))

Abstract

Tangent spaces of a sub-Riemannian manifold are themselves sub-Riemannian manifolds. They can be defined as metric spaces, using Gromov’s definition of tangent spaces to a metric space, and they turn out to be sub-Riemannian manifolds. Moreover, they come with an algebraic structure: nilpotent Lie groups with dilations. In the classical, Riemannian, case, they are indeed vector spaces, that is, abelian groups with dilations. Actually, the above is true only for regular points. At singular points, instead of nilpotent Lie groups one gets quotient spaces G/H of such groups G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Agrachev and R. V. Gamkrelidze, The exponential representation of flows and the chronological calculus, Mat. Sbornik (N.S.), 107 (149) (1978), 467–532, 639. English transi.: Math. USSR Sbornik, 35 (1979), 727–785.

    MathSciNet  Google Scholar 

  2. A. A. Agrachev, R. V. Gamkrelidze and A. V. Sarychev, Local invariants of smooth control systems, Acta Appl. Math. 14 (1989), 191–237.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bellaïche, Métriques de Carnot-Carathéodory sur les variétés, unpublished manuscript, 1981.

    Google Scholar 

  4. A. Bellaïche, J.-P. Laumond and J.-J. Risler, Nilpotent infinitesimal approximations to a control Lie algebra, in IFAC Nonlinear Control Systems Design Symposium (NOL-COS 92’),174–181, Bordeaux, France, June 1992.

    Google Scholar 

  5. N. Bourbaki, Variétés différentielles et analytiques. Fascicule de résultats (§1 à 7.), Hermann, Paris, 1967.

    Google Scholar 

  6. R. W. Brockett, Control theory and singular Riemannian geometry, in New directions in applied mathematics, P. J. Hilton and G. J. Young eds., Springer-Verlag, 1982.

    Google Scholar 

  7. W. L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117, (1939) 98–105.

    Article  MathSciNet  Google Scholar 

  8. A. Connes, Non commutative geometry, Academic Press, San Diego, 1994.

    Google Scholar 

  9. C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems, in Conference on harmonic analysis in honor of Antoni Zygmund, (Chicago, Ill., 1981), Wadsworth Math. Ser., Wadsworth, Belmont, Wadsworth, 1983, Vol. II, 590–606

    Google Scholar 

  10. B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées souselliptiques sur certains groupes nilpotents, Acta Math., 139 (1977), 95–153.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Gaveau, Systèmes dynamiques associés à certains opérateurs elliptiques, Bull. Sc. Math., 2e série, 102 (1978), 203–229.

    MathSciNet  MATH  Google Scholar 

  12. N. Goodman, Nilpotent Lie groups, Springer Lecture Notes in Mathematics, Vol. 562, 1976.

    MATH  Google Scholar 

  13. M. Gromov (avec J. Lafontaine, P. Pansu), Structures métriques pour les variétés riemanniennes, Cedic-Nathan, Paris, 1981.

    MATH  Google Scholar 

  14. M. Gromov, Carnot-Carathéodory spaces seen from within, this volume.

    Google Scholar 

  15. V. V. Grušin, On a class of hypoelliptic operators, Math. Sb., 83 (125) (1970), 456–473 (Russian). Engl, trad.: Math. USSR Sb. 12 (1970), 458–476.

    Google Scholar 

  16. V. V. Grušin, A certain class of elliptic pseudodifferential operators that are degenerate on a submanifold, Math. Sb., 84 (126) (1971), 163–195 (Russian). Engl, trad.: Math. USSR Sb. 13 (1971), 155–185.

    Google Scholar 

  17. B. Helffer et J. Nourrigat, Approximation d’un système de champs de vecteurs, et applications à l’hypoellipticité, Arkiv för Matematik, 19 (1979), 237–254.

    Article  MathSciNet  Google Scholar 

  18. R. Hermann, Geodesies of singular Riemannian metrics, Bull. AMS 79 (1973), 780–782.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Hermes, Nilpotent and high-order approximations of vector field systems, SIAM Review, 33 (2), 238–264.

    Google Scholar 

  20. L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147–171.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Lobry, Contrôlabilité des systèmes non linéaires, SIAM J. Control, 8 (1970), 573–605. Erratum, Contrôlabilité des systèmes non linéaires, SIAM J. Control, 8 (1970), 573–605. Erratum: “Contrôlabilité des systèmes non linéaires”, SIAM J. Control Optimization, 14 (1976), 387.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Métivier, Comm. Partial Differential Equations, 1 (1976), 467–519.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Mitchell, On Carnot-Carathéodory metrics, Journal of Differential Geom., 21 (1985) 35–45.

    MATH  Google Scholar 

  24. O. A. Oleinik and E. V. Radkevic, Second order equations with nonnegative characteristic form, Plenum Press, New York, London, 1973.

    Google Scholar 

  25. P. Pansu, Métriques de Carnot-Carathéodory et quasi-isométries des espaces symétriques de rang un, Ann. of Math., (2) 129 (1989), 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. K. Rashevsky, Any two points of a totally nonholonomic space may be connected by an admissible line, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math., 2 (1938), 83–94 (Russian).

    Google Scholar 

  27. Ch. Rockland, Intrinsic nilpotent approximations, Acta Appl. Math., 8 (1987), 213–270.

    Article  MathSciNet  MATH  Google Scholar 

  28. L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247–320.

    Article  MathSciNet  Google Scholar 

  29. M. Spivak, A comprehensive introduction to differential geometry, Vol. 1, Sec. edition, Publish or Perish, Inc., Houston, Texas, 1979.

    Google Scholar 

  30. P. Stefan, Accessible sets, orbits, and foliations with singularities, Proc. London Math. Soc., (3) 29 (1974), 699–713.

    Article  MathSciNet  MATH  Google Scholar 

  31. E. M. Stein, Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups, in Actes du Congrès international des mathématiciens, Nice 1970, Vol. 1, 173–189.

    Google Scholar 

  32. E. M. Stein, Harmonic Analysis, Princeton University Press, Princeton, N.J., 1993.

    MATH  Google Scholar 

  33. R. S. Strichartz, Sub-Riemannian geometry, J. Differential Geom., 24, (1986), 221–263.

    MathSciNet  MATH  Google Scholar 

  34. H. J. Sussmann, V. Jurdjevic, Controllability of nonlinear systems, J. Differential Equations, 12 (1972), 95–116.

    Article  MathSciNet  MATH  Google Scholar 

  35. H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc., 180 (1973), 171–188.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. N. Varchenko, Obstruction to local equivalence of distributions, Mat. Zametki, 29 (1981), 939–947 (Russian). Engl. Trad., Math, notes, 29 (1981), 479–484.

    MathSciNet  MATH  Google Scholar 

  37. N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and geometry on groups, Cambridge University Press, 1992.

    Google Scholar 

  38. A. M. Vershik and V. Ya. Gershkovich, Nonholonomic problems and the theory of distributions, Acta Appl. Math., 12, 181–209, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. M. Vershik and V. Ya. Gershkovich, Nonholonomic dynamical systems, geometry of distributions and variational problems, in Dynamical Systems VII, V. I. Arnold, S. P. Novikov (Eds), Encyclopaedia of Mathematical Sciences, vol. 16, Springer, 1994. (Original Russian edition, VINITI, Moscow, 1987 )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Bellaïche, A. (1996). The tangent space in sub-Riemannian geometry. In: Bellaïche, A., Risler, JJ. (eds) Sub-Riemannian Geometry. Progress in Mathematics, vol 144. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9210-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9210-0_1

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9946-8

  • Online ISBN: 978-3-0348-9210-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics