Advertisement

On convex stability directions for real quasipolynomials

  • L. Atanassova
  • D. Hinrichsen
  • V. L. Kharitonov
Conference paper
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 121)

Abstract

This note deals with convex directions for quasipolynomials in the real case. It gives analytic criteria ensuring Hurwitz stability of segments of real quasipolynomials of delay type. The results are derived using an approach introduced in [4].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B.R. Barmish. New Tools for Robustness of Linear Systems. Macmillan Publishing Company, New York, 1994.zbMATHGoogle Scholar
  2. [2]
    R. Bellman and K.L. Cook. Differential-Difference Equations. Academic Press, New York, 1963.zbMATHGoogle Scholar
  3. [3]
    M. Fu, A.W. Olbrot, and M.P. Polis. Edge theorem and graphical test for robust stability of neutral time-delay system Automatica 17: 739–742, 1991MathSciNetCrossRefGoogle Scholar
  4. [4]
    D. Hinrichsen and V.L. Kharitonov. On convex directions for stable polynomials. Technical Report 309, Inst. f. Dynamische Systeme, Universität Bremen, Bremen, 1994.Google Scholar
  5. [5]
    V. L. Kharitonov and A.P. Zhabko. Robust Stability of Time-Delay Systems. IEEE Transactions on Automatic Control, AC-39: 2388–2397, 1994.Google Scholar
  6. [6]
    A. Rantzer. Stability conditions for polytopes of polynomials. IEEE Transactions on Automatic Control, AC-37: 79–89, 1992.Google Scholar
  7. [7]
    E. Schwengeler. Geometrisches iiber die Verteilung der Nullstellen spezieller ganzer Func- tionen (Exponentialsummen). Ph.D. thesis, Zurich, 1925.Google Scholar
  8. [8]
    H. Whitney. Complex Analytic Varieties. Addison-Wesley, Reading, 1972.zbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1996

Authors and Affiliations

  • L. Atanassova
    • 1
  • D. Hinrichsen
    • 1
  • V. L. Kharitonov
    • 2
  1. 1.Institut für Dynamische SystemeUniversität BremenBremenGermany
  2. 2.Dept. Appl. Math. & Control TheorySt. Petersburg UniversityRussia

Personalised recommendations