Advertisement

Open Problems

  • R. Jeltsch
  • M. Mansour
Conference paper
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 121)

Keywords

Membership Function Formal Power Series Matrix Polynomial Advection Equation Stability Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B.D.O. Anderson and S. Dasgupta, P.P. Khargonekar, F.J. Kraus and M. Mansour: Robust strict positive realness: characterization and construction, IEEE Trans Circuits and Systems Vol 37, pp 869–876, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    B.D.O. Anderson and S. Dasgupta: Multiplier theory and operator square roots: application to robust and time-varying stability, this volume.Google Scholar
  3. [1]
    B.D.O. Anderson and S. Dasgupta: Multiplier theory and operator square roots: application to robust and time-varying stability, this volume.Google Scholar
  4. [1]
    L. Qiu, B. Bernhardsson, A. Rantzer, E. J. Davison, P. M. Young, and J. C. Doyle: A formula for computation of the real stability radius. Automatica, to appear July 1995.Google Scholar
  5. [1]
    D. Hinrichsen and A.J. Pritchard: Real and complex stability radii: a survey. In Control of Uncertain Systems, volume 6 of Progress in System and Control Theory, 119–162, Basel. Birkhauser, 1990.Google Scholar
  6. [2]
    L. Qiu, B. Bernhardsson, A. Rantzer, E.J. Davison, P.M. Young and J.C. Doyle: A formula for computation of the real stability radius. Automatica, to appear July 1995.Google Scholar
  7. [3]
    D. Hinrichsen, A. J. Pritchard and S.B. Townley: A Riccati equation approach to maximizing the complex stability radius by state feedback. International Journal of Control, 52, 769–794, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [1]
    D. Hinrichsen and A.J. Pritchard: Destabilization by output feedback. Differential and Integral Equations, 5, 357–386, 1992.MathSciNetzbMATHGoogle Scholar
  9. [1]
    R. Jeltsch: Stability of time discretization, Hurwitz determinants and order stars, in this volume.Google Scholar
  10. [2]
    Jeltsch R., Renaut R.A., Smit J.H., An accuracy barrier for stable three-time-lev el difference schemes for hyperbolic equations. Research Report No 95-01, 1995, Seminar für Angewandte Mathematik, ETH Zürich.Google Scholar
  11. [3]
    Jeltsch R., Smit J.H., Accuracy barriers of difference schemes for hyperbolic equations. SIAM J. Numer. Anal. 24, 1–11, (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  12. [4]
    Jeltsch R., Smit J.H., Accuracy barriers of three-time-level difference schemes for hyperbolic equations. Ann. University of Stellenbosch, 1992 /2, 1–34, 1992.MathSciNetGoogle Scholar
  13. [1]
    B.D. Anderson and E.I. Jury: A simplest possible property of the generalized RouthHurwitz conditions. SIAM J. Cont. Opt., 15, 1977.Google Scholar
  14. [2]
    B.D. Anderson, E.I. Jury and L.F. Chaparro: Relations between real and complex polynomials for stability and aperiodicity conditions. IEEE Trans. Auto. Cont., AC-20, 244–246, 1975.Google Scholar
  15. [1]
    P. Henrici: Applied and Computational Complex Analysis, Vol. 1. John Wiley, New York, 682 pp, 1974.Google Scholar
  16. [2]
    H. Rutishauser: Der Quotienten-Differenzen-Algorithmus. Mitt. Inst. Angew. Math. ETH 7. Birkhäuser, Basel, 74 pp, 1957.Google Scholar
  17. [3]
    A.N. Stokes: Efficient Stable Ways to Calculate Continued Fraction Coefficients From Some Series. Num. Math. 42, 237–245, 1983.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1996

Authors and Affiliations

  • R. Jeltsch
  • M. Mansour

There are no affiliations available

Personalised recommendations