Skip to main content

Stability of Time Discretization, Hurwitz Determinants and Order Stars

  • Conference paper
Book cover Stability Theory

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 121))

Abstract

We shall review stability requirements for time discretizations of ordinary and partial differential equations. If a constant time step is used and the method involves more than two time levels stability is always related to the location of roots of a polynomial in circular or half plane regions. In several cases the coefficients of the polynomial depend on a real or complex parameter. Hurwitz determinants allow to create a fraction free Routh array to test the stability of time discretizations. A completely different technique, called order stars, is used to relate accuracy of the schemes with their stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnett S., New reductions of Hurwitz determinants. Int. J. Control, 18, 1973, 977–991.

    Article  MATH  Google Scholar 

  2. Bashforth F., An attempt to test the theory of capillary action by comparing the theoretical and measured forms of drops of fluid. With an explanation of the method of integration employed in constructing the tables which give the theoretical form of such drops. By J.C. Adams, Cambridge University Press 1883.

    Google Scholar 

  3. Brown W.S., TYaub J.F., On Euclid’s Algorithm and the Theory of Subresultants. J. Assoc. Comput. Mach., 18, 1971, 505–514.

    MathSciNet  MATH  Google Scholar 

  4. Collins G.E., Subresultants and Reduced Polynomial Remainder Sequences. J. Assoc. Comput. Mach., 14, 1967, 128–142.

    Google Scholar 

  5. Fichera G., Alcune osservazioni sulle condizioni di stabilita per le equazioni algebriche a coefficienti reali. Bolletino della Unione Matematica Italia, Ser. III, 2, 1947, 103–109.

    Google Scholar 

  6. Gustafsson B., Kreiss H.-O., Sundström A., Stability theory of difference approximations for mixed initial boundary value problems II. Math. Comp. 26, 649–686, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  7. Hairer E., NOrsett S.P., Wanner G., Solving ordinary differential equations I. Springer, 1987.

    Google Scholar 

  8. Hairer E., Wanner G., Solving ordinary differential equations II. Springer, 1991.

    Google Scholar 

  9. Henrici P., Discrete variable methods in ordinary differential equations. J. Wiley amp; Sons, 1992.

    Google Scholar 

  10. Hurwitz A., Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt. Mathematische Annalen XLVI, 273–284, 1895.

    Google Scholar 

  11. Iserles A., NOrsett S.P., Order stars. Chapman amp; Hall, 1991.

    Google Scholar 

  12. Jeltsch R., Stiff stability and its relation to AQ— and A(0)—stability. SIAM J. Numer. Anal. 13, 1976, 8–17.

    Google Scholar 

  13. Jeltsch R., Stiff stability of multi-step multi—derivative methods. SIAM J. Numer. Anal, 14, 1977, 760–772.

    Google Scholar 

  14. Jeltsch R., Corrigendum to “Stiff stability of multi—step multi—derivative methods”. SIAM J. Numer. Anal, 16, 1979, 339.

    Article  MathSciNet  MATH  Google Scholar 

  15. Jeltsch R., An optimal fraction free Routh array. Int. J. Control, 30, 1979, 653–660.

    Google Scholar 

  16. Jeltsch R., Kiani P., Raczek K., Counterexamples to a stability barrier. Numer. Math., 52, 301–316, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  17. Jeltsch R., Renaut R.A., Smit J.H., An accuracy barrier for stable three—time—level difference schemes for hyperbolic equations. Research Report No 95–01, 1995, Seminar für Angewandte Mathematik, ETH Zürich.

    Google Scholar 

  18. Jeltsch R., Smit J.H., Accuracy barriers of difference schemes for hyperbolic equations. SIAM J. Numer. Anal. 24, 1–11, (1987).

    Article  MathSciNet  MATH  Google Scholar 

  19. Jeltsch R., Smit J.H., Accuracy barriers of three—time—level difference schemes for hyperbolic equations. Ann. University of Stellenbosch, 1992 /2, 1–34, 1992.

    MathSciNet  Google Scholar 

  20. Kreiss H.—O., Difference approximations for the initial—boundary value problem for hyperbolic differential equations, in: Numerical Solutions of Nonlinear Differential equations. Proc. Adv. Sympos., Madison, Wisconsin, 141–166, 1966.

    Google Scholar 

  21. Kreiss H.—O., Stability theory for difference approximations of mixed initial—boundary value problem I. Math. Comput. 22, 703–714, 1968.

    Google Scholar 

  22. Lambert J.D., Computational methods in ordinary differential equations, J. Wiley amp; Sons, 1973.

    Google Scholar 

  23. Marden M., Geometry of polynomials. American Mathematical Society, 1966.

    Google Scholar 

  24. Strang G., Iserles A., Barriers to stability. SIAM J. Numer. Anal. 20, 1251–1257, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  25. Wanner G., Hairer E., NOrsett S.P., Order stars and stability theorems. BIT 18, 475–489, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  26. Wesseling P., A method to obtain Neumann stability conditions for the convection—diffusion equation. In: Numerical Methods for Fluid Dynamics V, K W Morton and M J Baines, editors, 211–224, Clarendon Press, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel

About this paper

Cite this paper

Jeltsch, R. (1996). Stability of Time Discretization, Hurwitz Determinants and Order Stars. In: Jeltsch, R., Mansour, M. (eds) Stability Theory. ISNM International Series of Numerical Mathematics, vol 121. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9208-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9208-7_20

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9945-1

  • Online ISBN: 978-3-0348-9208-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics