Advertisement

Adaptive control of non-minimum phase systems subject to unknown bounded disturbances

  • Rogelio Lozano
  • Dionisio A. Suárez
Conference paper
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 121)

Abstract

Robustness is currently an active area of research in adaptive control. In the so-called ideal case, global stability of adaptive control systems can be established under certain ideal conditions, i.e. in noise-free processes without unmodeled dynamics, in spite of parametric uncertainty [2, 4, 11, 13]. However, it has been shown that these algorithms may become unstable in non ideal conditions [16].

Keywords

Adaptive Control Adaptive Controller Unmodeled Dynamic Adaptive Control System Bounded Disturbance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.L. Bunich. Rapidly converging algorithms for the identification of a linear system with limited nois. Automn. Remote Control, 44: 1047–1054, 1983.Google Scholar
  2. [2]
    B. Egardt. Stability of adaptive controllers. Lectures notes in control and information sciences, 20, 1979. Springer Berlin.Google Scholar
  3. [3]
    G. Feng. A robust discrete-time direct adaptive control algorithm. Technical report, University of New South Wales. Dept. of Systems and Control, 1993.Google Scholar
  4. [4]
    G.C. Goodwin, P.J. Ramadge, and P.E. Caines. Discrete time multivariable adaptive control. IEEE Trans. Aut. Control, 25: 449–456, 1980.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    R. Lozano and B. Brogliato. Adaptive control of a simple nonlinear system without a priori information on the parameters. IEEE Trans. Aut. Control, 37: 30–37, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    R. Lozano and R. Ortega. Reformulation of the parameter identification problem for systems with bounded disturbances. Automatical 23: 247–251, 1987.zbMATHCrossRefGoogle Scholar
  7. [8]
    R. Lozano, A. Osorio, and J. Torres. Adaptive stabilization of nonminimal phase 1-th order continuous time systems. In ACC Chicago, June 1992.Google Scholar
  8. [8]
    R. Lozano and D.A. Suárez. Adaptive control of non-minimum phase systems subject to unknown bounded disturbances. Technical report, Université de Technonolie de Compiegne. HEUDIASYC URA CNRS 817, 1995.Google Scholar
  9. R. Lozano and X. Zhao. Adaptive pole placement without excitation probing signals. IEEE Trans. Aut. Control, 39 (1), 1994.Google Scholar
  10. [10]
    R.H. Middleton, G.C. Goodwin, D.J. Hill, and D.Q. Mayne. Design issues in adaptive control. IEEE Trans. Aut. Control, 33: 50–58, Jan 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    A.S. Morse. Global stability of parameter adaptive control systems. IEEE Trans. Aut. Control, 25: 433–439, 1980.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    A.S. Morse, D.Q. Mayne, and G.C. Goodwin. Applications of hysteresis switching in parameter adaptive control. Technical report, Yale University, 1991. Report No. 9104.Google Scholar
  13. [13]
    K.S. Narendra, Y.H. Lin, and L.S. Valavani. Stable adaptive controller design, part II: Proof of stability. IEEE Trans. Aut. Control, 25: 440–448, 1980.zbMATHCrossRefGoogle Scholar
  14. [14]
    R. Ortega and Y. Tang. Robustness of adaptive controllers-a suvey. Automatica, 25: 651–677, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    B. B. Peterson and K.S. Narendra. Bounded error adaptive control. IEEE Trans. Aut. Control, 27: 1161–1168, 1982.zbMATHCrossRefGoogle Scholar
  16. [16]
    C. E. Rohrs, M. Athans, and G. Stein. Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics. IEEE Trans. Aut. Control, 30: 881–889, 1985.zbMATHCrossRefGoogle Scholar
  17. [17]
    C. Samson. Stability analysis of adaptively controlled system subject to bounded disturbances. Automatica, 19: 81 86, 1983.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1996

Authors and Affiliations

  • Rogelio Lozano
    • 1
  • Dionisio A. Suárez
    • 1
  1. 1.Université de Technologie de CompiègneCompiègneFrance

Personalised recommendations