Skip to main content

Thiol/disulfide exchange and redox potentials of proteins

  • Chapter

Part of the book series: Bioelectrochemistry: Principles and Practice ((BPP,volume 5))

Abstract

The sulfhydryl group of the amino acid cysteine plays a pivotal role in the structure and function of numerous proteins. The high nucleophilicity of the thiolate anion coupled with its reasonably low pKa produces high chemical reactivity in nucleophilic additions and substitutions, accounting for its wide-spread use as a catalytic group in a variety of enzymes catalyzing hydrolysis, substitution, and exchange reactions. In addition, the reversible two electron oxidation converting the thiol of cysteine to its disulfide form is used not only in electron transfer reactions but also in crosslinking and stabilizing the tertiary and quarternary structure of proteins, the regulation of enzyme activity, and the protection of the intracellular environment. The direct application of electrochemical methods to the study of the redox properties of thiols, either in small molecules or in proteins, is complicated by interactions of the thiol with most electrode surfaces. Consequently, there have been few reliable electrochemical measurements of the redox potentials of cysteine and other biological thiols and disulfides. Nevertheless, alternate methodology involving reversible thiol/disulfide exchange equilibria has allowed the estimation of standard redox potentials of the sulfhydryl groups of biologically important thiols, including those found in proteins. In this chapter, the redox chemistry and biochemistry of the sulfhydryl groups of proteins will be outlined, methodology for applying the thiol/disulfide exchange reaction to the measurement of redox potentials will be described, and examples of the biological function of these redox state changes will be given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. PC Jocelyn, Biochemistry of the Sulfhydryl Group, Academic Press, New York, 1972.

    Google Scholar 

  2. Yu M Torchinskii, Sulfhydryl and Disulfide Groups of Proteins, Plenum, New York, 1974.

    Google Scholar 

  3. H Sies, Angew. Chem. Int. Ed. Engl. 25 (1986) 1058–1064.

    Google Scholar 

  4. A Meister and ME Anderson, Annu. Rev. Biochem. 52 (1983) 711–760.

    CAS  Google Scholar 

  5. B Chance, H Sies and A Boveris, Pysiol. Rev. 59 (1979) 527–605.

    CAS  Google Scholar 

  6. CH Williams in The Enzymes, PD Boyer (ed), Academic Press, New York, 1976, Vol 13, pp. 89–174.

    Google Scholar 

  7. L Eldjan and A Phil, J. Amer. Chem. Soc. 79 (1957) 4589–4593.

    Google Scholar 

  8. ES Guzman Barron, Adv. Enzymol. 11 (1951) 201–266.

    Google Scholar 

  9. M Freidman, The Chemistry and Biochemistry of the SH Group, Pergamon Press, Elmsford, New York, 1973.

    Google Scholar 

  10. HF Gilbert, Adv. Enzymol. 63 (1990) 69–172.

    CAS  Google Scholar 

  11. NS Kosower and EM Kosower, Int. Rev. Cytol. 54 (1978) 109–160.

    CAS  Google Scholar 

  12. DM Ziegler, Annu. Rev. Biochem. 54 (1985) 305–329.

    CAS  Google Scholar 

  13. BB Buchanan, Ann. Rev. Plant Physiol. 31 (1980) 341–374.

    CAS  Google Scholar 

  14. HF Gilbert, Methods Enzymol. 107 (1984) 330–351.

    CAS  Google Scholar 

  15. H Eggerer and A Klette, Eur. J. Biochem. 1 (1967) 447–453.

    CAS  Google Scholar 

  16. A Klug and D Rhodes, Trend. Biol. Sci. 12 (1987) 464–469.

    CAS  Google Scholar 

  17. RC Fahey in Protein Crosslinking: Biochemical and Molecular Aspects, part A, Plenum Publishing Corp., New York, 1977, pp. 1–30.

    Google Scholar 

  18. DJ Reed and PW Beatty in Reviews in Biochemical Toxicology, E Hodgson, JR Bend, and RM Philpot (eds), Elsevier, New York, 1980, pp. 231–242.

    Google Scholar 

  19. JM Thornton, J. Mol. Biol. 151 (1981)261–287.

    Google Scholar 

  20. DB Volkin and AM Klibanov, J. Biol. Chem. 262 (1987) 2945–2950.

    CAS  Google Scholar 

  21. CN Pace, Sci. 15 (1990) 14–17.

    CAS  Google Scholar 

  22. CB Anfinsen and HA Scheraga, Adv. Protein Chem. 29 (1975) 205–225.

    CAS  Google Scholar 

  23. TE Creighton, Prog. Biophys. Mol. Biol. 33 (1978) 231–297.

    CAS  Google Scholar 

  24. CA Marks, H Naderi, PA Kosen, ID Kuntz and S Anderson. Science 235 (1987) 1370–1373.

    CAS  Google Scholar 

  25. FG Hopkins and M Dixon, J. Biol. Chem. 54 (1922) 527–563.

    CAS  Google Scholar 

  26. LE Anderson in Thioredoxin and Glutaredoxin Systems: Structure and Function, A Holmgren (ed), Raven Press, New York, 1986, pp 26–37.

    Google Scholar 

  27. H Sies, R Brigelius and P Graf, Adv. Enzyme Reg. 26 (1987) 175–189.

    CAS  Google Scholar 

  28. HF Gilbert, J. Biol. Chem. 257 (1982) 12086–12091.

    CAS  Google Scholar 

  29. DW Walters and HF Gilbert, J. Biol. Chem. 261 (1986) 12135–13143.

    Google Scholar 

  30. RE Cappel and HF Gilbert, J. Biol. Chem. 265 (1990) 15464–15470.

    CAS  Google Scholar 

  31. F Daniels and RA Alberty, Physical Chemistry, 3rd Edition, John Wiley and Sons, New York, 1966, p. 241.

    Google Scholar 

  32. J Houk and GM Whitesides, J. Amer. Chem. Soc. 109 (1987) 6825–6836.

    CAS  Google Scholar 

  33. GH Snyder, Biochemistry 26 (1987) 688–694.

    CAS  Google Scholar 

  34. WW Cleland, Biochemistry 3 (1964) 480–483.

    CAS  Google Scholar 

  35. DM Rothwarf and HA Scheraga, Proc. Natl. Acad. Sci. USA 89 (1992) 7944–7948.

    CAS  Google Scholar 

  36. MH Chau and JW Nelson, FEBS Lett. 291 (1991) 296–298.

    CAS  Google Scholar 

  37. EM Scott, IW Duncan and V Ekstrand, J. Biol. Chem. 238 (1963) 3928–3933.

    CAS  Google Scholar 

  38. G Gorin, A Esfandi and GB Guthrie, Arch. Biochem. Biophys. 168 (1975) 450–454.

    CAS  Google Scholar 

  39. WM Clark, Oxidation-Reduction Potentials of Organic Systems, The Williams and Wilkins Co., Baltimore, 1960, p. 486.

    Google Scholar 

  40. IM Kolthoff and C Barnum, J. Amer. Chem. Soc. 62 (1940) 3061–3066.

    CAS  Google Scholar 

  41. GT Rogers and DN Mallett, Bioelectrochem. Bioenerg. 10 (1983) 269–277.

    CAS  Google Scholar 

  42. RP Szajewski and GM Whitesides. J. Amer. Chem. Soc. 102 (1980) 2011–2026.

    CAS  Google Scholar 

  43. HA Scheraga, Y Konishi and T Ooi, Adv. Biophys. 18 (1984) 21–41.

    CAS  Google Scholar 

  44. TE Creighton, Meth. Enzymol. 107 (1984) 305–329.

    CAS  Google Scholar 

  45. JS Weissmann and PS Kim, Science 253 (1991) 1386–1393.

    Google Scholar 

  46. JA Wells and DB Powers, J. Biol. Chem. 261 (1986) 6564–6570.

    CAS  Google Scholar 

  47. DW Walters and HF Gilbert, J. Biol. Chem. 261 (1986) 15372–15377.

    CAS  Google Scholar 

  48. MW Collison, D Beidler, LM Grimm and JA Thomas, Biochim. Biophys. Acta 885 (1986)58–67.

    Google Scholar 

  49. DJ Hupe and ER Pohl, Isr. J. Chem. 26 (1986) 395–399.

    Google Scholar 

  50. RE Cappel and HF Gilbert, J. Biol. Chem. 261 (1986) 15378–15384.

    CAS  Google Scholar 

  51. PC Jocelyn, Eur. J. Biochem. 2 (1967) 327–333.

    CAS  Google Scholar 

  52. IM Kolthoff, W Stricks and RC Kapoor, J. Amer. Chem. Soc. 77 (1955) 4733–4741.

    CAS  Google Scholar 

  53. L Eldjarn and A Phil, J. Amer. Chem. Soc. 79 (1957) 4589–4595.

    CAS  Google Scholar 

  54. P Eyer and D Podhradsky, Anal. Biochem. 153 (1986) 57–61.

    CAS  Google Scholar 

  55. R Zhang and GH Snyder, Biochemistry 27 (1988) 3785 - 3794.

    CAS  Google Scholar 

  56. Y Goto and K Hamaguchi, J. Mol. Biol. 146(1981)321–327.

    Google Scholar 

  57. ME O’Donnell and CH Williams, J. Biol. Chem. 258 (1983) 13795–13805.

    Google Scholar 

  58. RG Matthews and CH Williams, J. Biol. Chem. 251 (1976) 3956–3964.

    CAS  Google Scholar 

  59. SM Miller, DP Ballou, V Massey, CH Williams and CT Walsh, J. Biol. Chem. 261 (1986) 8081–8084.

    CAS  Google Scholar 

  60. A Holmgren, J. Biol. Chem. 254 (1979) 3672–3678.

    CAS  Google Scholar 

  61. A Holmgren, Meth. Enzymol. 107 (1984) 295–300.

    CAS  Google Scholar 

  62. HE Huber, M Russel, P Model and CC Richardson, J. Biol. Chem. 261 (1986) 15006–15012.

    CAS  Google Scholar 

  63. F Rebeille and MD Hatch, Arch. Biochem. Biophys. 249 (1986) 164–170.

    CAS  Google Scholar 

  64. CJ Clancey and HF Gilbert, J. Biol. Chem. 262 (1987) 13545–13551.

    CAS  Google Scholar 

  65. AH Fairlamb, P Blackburn, P Ulrich, BT Chait and A Cerami, Science 227 (1985) 1485–1487.

    CAS  Google Scholar 

  66. TE Creighton, Functions of Glutathione: Biochemical, Physiological, Toxicological, and Chemical Aspects, A Larsson, S Orrenius, A Holmgren and B Mannervik (eds), Raven Press, New York, 1983, pp. 205–213.

    Google Scholar 

  67. CN Pace and TE Creighton, J. Mol. Biol. 188 (1986) 477–486.

    CAS  Google Scholar 

  68. RT Sauer, K Hehir, RS Stearman, MA Weiss, A Jeitler-Nilsson, EG Suchandek et al., Biochemistry 25 (1986) 5992–5998.

    Google Scholar 

  69. RE Cappel, JW Bremer. TM Timmons, TE Nelson and HF Gilbert, J. Biol. Chem. 261 (1986) 15385–15389.

    CAS  Google Scholar 

  70. RE Cappel and HF Gilbert, J. Biol. Chem. 264 (1989) 9180–9187.

    CAS  Google Scholar 

  71. RE Cappel and HF Gilbert, J. Biol. Chem. 263 (1988) 12204–12212.

    CAS  Google Scholar 

  72. MM Lyles and HF Gilbert, Biochemistry 30 (1991) 613–619.

    CAS  Google Scholar 

  73. A Zapun, JCA Bardwell and TE Creighton, Biochemistry 32 (1993) 5083–5092.

    Google Scholar 

  74. MI Page and WP Jencks, Biochem. Biophys. Res. Commun. 57 (1974) 887–889.

    Google Scholar 

  75. TE Creighton, Meth. Enzymol. 131 (1986) 83–104.

    CAS  Google Scholar 

  76. PJ Milburn, YC Meinwald, S Takahashi, T Ooi and HA Scheraga, Int. J. Peptide Protein Res. 31 (1988) 311–321.

    CAS  Google Scholar 

  77. DC Poland and HA Scheraga, Biopolymers 3 (1965) 379–399.

    CAS  Google Scholar 

  78. PN Kao and A Karlin, J. Biol. Chem. 261 (1986) 8085–8088.

    CAS  Google Scholar 

  79. JM Wilson, RJ Bayer and DJ Hupe, J. Amer. Chem. Soc. 99 (1977) 7922–7926.

    CAS  Google Scholar 

  80. HF Gilbert, Biochemistry 28 (1989) 7298–7305.

    CAS  Google Scholar 

  81. WP Jencks, Proc. Natl. Acad. Sci. USA 78 (1981) 4046–4050.

    Google Scholar 

  82. BA Katz and A Kossiakoff, J. Biol. Chem. 261 (1986) 15480–15485.

    CAS  Google Scholar 

  83. PJ Milburn, Y Konishi, YC Meinwald and HA Scheraga, J. Amer. Chem. Soc. 109 (1987) 4486–4496.

    CAS  Google Scholar 

  84. A Holmgren in Thioredoxin and Glutaredoxi Systems: Structure and Function, A Holmgren (ed), Raven Press, New York, 1986, pp. 1–9.

    Google Scholar 

  85. A Holmgren and M Fagerstedt, J. Biol. Chem. 257 (1982) 6926–6933.

    CAS  Google Scholar 

  86. EA Newsholm and C Start, Regulation in Metabolism, John Wiley, London, 1973, p. 325.

    Google Scholar 

  87. I Carlberg and B Mannervik, Meth. Enzymol. 113 (1985) 484–489.

    CAS  Google Scholar 

  88. RA Karplus and GE Schulz, J. Mol. Biol. 195 (1987) 701–729.

    CAS  Google Scholar 

  89. AJ Alpert and HF Gilbert, Anal. Biochem. 144 (1985) 553–562.

    CAS  Google Scholar 

  90. N Nitateishi, T Higashi, S Shinya, A Naruse and Y Sakamoto, J. Biochem. (Tokyo) 75 (1974) 93–103.

    Google Scholar 

  91. RJ Jaeger, RB Connolly and SD Murphy, Res. Commun. Chem. Pathol. Pharmacol. 6 (1973)465–467.

    Google Scholar 

  92. H Sies, Oxidative Stress, Academic Press, London, 1985.

    Google Scholar 

  93. V Massey and CH Williams, J. Biol. Chem. 240 (1965) 4470–4480.

    CAS  Google Scholar 

  94. B Mannervik, Acta Chem. Scand. 23 (1969) 2912–2914.

    Google Scholar 

  95. PM Chung, RE Cappel and HF Gilbert, Arch. Biochem. Biophys. 288 (1991) 48–53.

    CAS  Google Scholar 

  96. PG Penketh, WPK Kennedy, CL Patton and AC Sartorelli, FEBS Lett. 221 (1987) 427 - 432.

    Google Scholar 

  97. SL Shames, AH Fairlamb, A Cerami and CT Wash, Biochemistry 25 (1986) 3519–3526.

    Google Scholar 

  98. M Droux, M Miginiac-Maslow, JP Jacquot, P Gadal, NA Crawford, NS Kosower et al., Arch. Biochem. Biophys. 256 (1987) 372–380.

    Google Scholar 

  99. L Thelander and P Reichard, Ann. Rev. Biochem. 48 (1979) 133–202.

    CAS  Google Scholar 

  100. J Stubbe, Adv. Enzymol. 63 (1990) 349–419.

    CAS  Google Scholar 

  101. L Thelander, J. Biol. Chem. 249 (1974) 4858–4862.

    CAS  Google Scholar 

  102. AN Lin, GW Ashley and J Stubbe, Biochemistry 26 (1987) 6905–6909.

    Google Scholar 

  103. A Holmgren, BO Soderberg, H Klund and CI Branden, Proc. Natl. Acad. Sci. USA 72 (1990) 2305–2309.

    Google Scholar 

  104. HJ Dyson, GP Gippert, DA Case, A Holmgren and PE Wright, Biochemistry 29 (1990) 4129–4135.

    Google Scholar 

  105. RF Kelley, W Shalongo, MV Jagannadham and E Stellwagen, Biochemistry 26 (1887) 1406–1411.

    Google Scholar 

  106. G Krause, J Lundstron, JL Barea, CP de la Cuesta and A Holmgren, J. Biol. Chem. 266 (1991) 9494–9500.

    Google Scholar 

  107. O Berglund and A Holmgren, J. Biol. Chem. 250 (1975) 2778–2782.

    CAS  Google Scholar 

  108. S Tabor, HE Huber and CC Richardson, J. Biol. Chem. 262 (1987) 16212–16223.

    CAS  Google Scholar 

  109. K Maeda, A Tsugita, A Dalzoppo, F Vilbois and P Schurmann, Eur. J. Biochem. 154 (1986) 197–203.

    CAS  Google Scholar 

  110. J Buc, M Riviere, B Gontero, P Sauve, J-C Meunier and J Ricard, Eur. J. Biochem. 140 (1984) 199–202.

    CAS  Google Scholar 

  111. A Holmgren, J. Biol. Chem. 254 (1979) 3664–3670.

    CAS  Google Scholar 

  112. B Kren, D Parsell and JA Fuchs, J. Bacteriol. 170 (1988) 308–315.

    CAS  Google Scholar 

  113. JO Hishoishog, H von Bahr-Lindstrishom, H Jhornvall and A Holmgren, Gene 43 (1986) 13–21.

    Google Scholar 

  114. H Tabor, J. Biol. Chem. 250 (1975) 2648–2658.

    CAS  Google Scholar 

  115. AH Fairlamb, GB Henderson and A Cerami, Mol. Biochem. Parasitol. 21 (1986) 247–257.

    CAS  Google Scholar 

  116. AH Fairlamb and GB Henderson in Host-Parasite Cellular and Molecular Interactions in Protozoal Infections, KP Chang and D Snary (eds), Springer-Verlag, New York, 1987, pp. 29–40.

    Google Scholar 

  117. CB Anfinsen, E Haber, M Sela and FH White, Proc. Natl. Acad. Sci. USA 47 (1961) 1309–1314.

    CAS  Google Scholar 

  118. TE Greighton, Proteins, Structures and Molecular Properties, WH Freeman, New York, 1984, Chap. 7.

    Google Scholar 

  119. VP Saxena and DB Wetlaufer, Biochemistry 9 (1970) 5015–5023.

    CAS  Google Scholar 

  120. Y Konishi, T Ooi and HA Scheraga, Biochemistry 21 (1982) 4734–4780.

    Google Scholar 

  121. DB Wetlaufer, PA Branca and G-X Chen, Protein Engineering 1 (1987) 141–146.

    Google Scholar 

  122. TE Creighton, J. Mol. Biol. 113 (1977)329–341.

    Google Scholar 

  123. HF Gilbert in Mechanisms of Protein Folding, RH Pain (ed) Oxford: RL Press (1994) pp. 104–136.

    Google Scholar 

  124. TY Lin and PS Kim, Biochemistry 28 (1989) 5282–5287.

    CAS  Google Scholar 

  125. R Wetzel, Trend. Biol. Sci. 12 (1987) 478–482.

    CAS  Google Scholar 

  126. CO Pabo and EG Suchanek, Biochemistry 25 (1987) 5987 - 5991.

    Google Scholar 

  127. JE Villafranca, EE Howell, DHY Voet, MS Strobel, RC Ogden, JN Abelson et al., Science 222 (1983) 782–788.

    Google Scholar 

  128. R Wetzel, LJ Perry, WA Baase and WJ Becktel, Proc. Natl. Acad. Sci. USA 85 (1988) 401–405.

    CAS  Google Scholar 

  129. M Matsumura, WJ Becktel, M Levitt and BW Matthews, Proc. Natl. Acad. Sci. USA 86 (1989) 6562–6566.

    CAS  Google Scholar 

  130. M Matsumura, G Signor and BW Matthews, Nature 342 (1989) 291–293.

    Google Scholar 

  131. GE Edwards, H Nakamoto, JN Burnell and MD Hatch, Annu. Rev. Plant Physiol. 36 (1985) 255–286.

    CAS  Google Scholar 

  132. R Scheibe, FEBS Lett. 133 (1981) 301–304.

    CAS  Google Scholar 

  133. R Rebeille and MD Hatch, Arch. Biochem. Biophys. 249 (1986) 171–179.

    CAS  Google Scholar 

  134. BB Buchanan, P Schurmann and PP Kalberer, J. Biol. Chem. 246 (1971) 5952–5959.

    CAS  Google Scholar 

  135. C Foyer and B Halliwell, Planta 133 (1976) 21–25.

    Google Scholar 

  136. B Halliwell and CH Foyer, Planta 139 (1978) 9–17.

    CAS  Google Scholar 

  137. CJ Batie and H Kamin, J. Biol. Chem. 261 (1986) 11214–11223.

    CAS  Google Scholar 

  138. RA Wolosiuk, NA Crawford, BC Yee and BB Buchanan, J. Biol. Chem. 254 (1979) 1627–1632.

    CAS  Google Scholar 

  139. D Di Monte, G Bellomo, H Thor, P Nicotera and S Orrenius, Arach. Biochem. Biophys. 235 (1984) 343–350.

    Google Scholar 

  140. NS Kosower, GA Vanderhoff and EM Kosower, Biochim. Biophys. Acta 272 (1972) 623–630.

    CAS  Google Scholar 

  141. GL Francis and FJ Ballard, Biochem. J. 186 (1980) 581–586.

    CAS  Google Scholar 

  142. H Sies and KH Summer, Eur. J. Biochem. 57 (1975) 503–512.

    CAS  Google Scholar 

  143. R Brigelius, Hoppe Seyler’s. Z. Physiol. Chem. 364 (1983) 989–996.

    CAS  Google Scholar 

  144. M Usami, H Matsushita andT Shimazu, J. Biol. Chem. 255 (1980) 1928–1934.

    Google Scholar 

  145. C Abate, L Patel, FJ Rauscher and T Curran, Science 249 (1990) 1157–1161.

    Google Scholar 

  146. KA Hutchison, G Matic, S Meshinchi, EH Bresnick and WB Pratt, J. Biol. Chem. 266 (1991)10505–10509.

    Google Scholar 

  147. TH Rushmore, MR Morton and CB Pickett, J. Biol. Chem. 266 (1991) 11632–11639.

    CAS  Google Scholar 

  148. ME Anderson, Meth. Enzymol. 113 (1985) 548–554.

    CAS  Google Scholar 

  149. TPM Akerboom, M Bilzer and H Sies, J. Biol. Chem. 257 (1982) 4248–4252.

    CAS  Google Scholar 

  150. BH Lauterburg, JD Adams and JR Mitchell, Hepatology 4 (1984) 586–590.

    CAS  Google Scholar 

  151. R Brigelius in Oxidative Stress, Academic Press, London, 1985, pp. 243–270.

    Google Scholar 

  152. DJ Reed and MW Fariss, Pharmacol. Rev. 36 (1984) 25S–32S.

    CAS  Google Scholar 

  153. JL Plummer, BR Smith, H Sies and JR Bend, Meth. Enzymol. 77 (1981) 50–59

    CAS  Google Scholar 

  154. A Meister, Meth. Enzymol. 113 (1985) 571–580.

    CAS  Google Scholar 

  155. OW Griffith, RJ Bridges and A Meister, Proc. Natl. Acad. Sci. USA 76 (1979) 6319–6322.

    CAS  Google Scholar 

  156. P Apontoweil and W Berends, Biochim. Biophys. Acta 399 (1975) 10.

    CAS  Google Scholar 

  157. S Orrenius, AA Jewell, H Thor, G Bellomo, L Eklow and MT Smith in Isolation, Characterization, and Use of Hepatocvtes, RA Harris and NW Cornell (eds), Elsevier, New York, 1983, pp 333–340.

    Google Scholar 

  158. R Brigelius, C Muckel, TPM Akerboom and H Sies, Biochem. Pharm. 32 (1983) 2529–2534.

    CAS  Google Scholar 

  159. MJ Meredith, Anal. Biochem. 131 (1983) 504–509.

    CAS  Google Scholar 

  160. T Higashi, M Furukawa, A Hikita, N Naruse, N Tateishi and Y Sakamoto, J. B iochem. (Tokyo) 257 (1983) 1661–1667.

    Google Scholar 

  161. MF Lou, LL Poulsen and DM Ziegler, Meth Enzymol. 143 (1987) 124–129.

    Google Scholar 

  162. E-M Park and JA Thomas, Biochim. Biophys. Acta 964 (1988) 151–160.

    CAS  Google Scholar 

  163. K Rokutan, JA Thomas and H Sies, Eur. J. Biochem. 179 (1989) 233–239.

    CAS  Google Scholar 

  164. YC Chai, CH Jung, CK Lii, SS Ashraf, S Hendrich, B Wolf et al. Arch. Biochem. Biophys. 284 (1991) 270–278.

    CAS  Google Scholar 

  165. RG Kemp, Meth. Enzymol. 42 (1972) 71–80.

    Google Scholar 

  166. HF Gilbert and MD Stewart, J. Biol. Chem. 256 (1981) 1782–1785.

    CAS  Google Scholar 

  167. CF Tormanen andTJ Scallen, Circulation 64 (1980) VI271.

    Google Scholar 

  168. I Dotan and I Shechter, Arch. Biochem. Biophys. 226 (1983) 401–410.

    CAS  Google Scholar 

  169. J Roitelman and I Shechter, J. Biol. Chem. 259 (1984) 870–877.

    CAS  Google Scholar 

  170. GC Ness, SJ Eales, LC Pendleton and M Smith, J. Biol. Chem. 260 (1985) 12391–12393.

    Google Scholar 

  171. I Dotan and 1 Schechter, J. Biol. Chem. 262 (1987) 17058–17064.

    Google Scholar 

  172. TJC Van Berkel, JF KosterandGEJ Staal, Biochim. Biophys. Acta 321 (1973)496–501.

    Google Scholar 

  173. JS Bond, J. Biol. Chem. 259 (1984) 886–891.

    Google Scholar 

  174. S Pontremoli, E Melloni, M Michetti, F Salamino, B Sparatore and BL Horecker, Arch. Biochem. Biophys. 213 (1982) 731–733.

    CAS  Google Scholar 

  175. Y Ozaki, A Mizuno, K Itoh and K Iriyama, J. Biol. Chem. 262 (1987) 15445–15551.

    Google Scholar 

  176. K Axelsson, S Eriksson and B Mannervik, Biochemistry 17, 2978, 1978.

    Google Scholar 

  177. ZR Gan and WW Wells, J. Biol. Chem. 261 (1986) 996–1001.

    CAS  Google Scholar 

  178. ZR Gan and WW Wells, J. Biol. Chem. 263 (1988) 9050–9054.

    CAS  Google Scholar 

  179. Y Yang and WW Wells, J. Biol. Chem. 265 (1990) 589–593.

    CAS  Google Scholar 

  180. M Luthman and A Holmgren, J. Biol. Chem. 257 (1982) 6686–6690.

    CAS  Google Scholar 

  181. ZR Gan and WW Wells, J. Biol. Chem. 262 (1987) 6699–6703.

    CAS  Google Scholar 

  182. YF Yang and WW Wells, J. Biol. Chem. 266 (1991) 12766–12772.

    CAS  Google Scholar 

  183. JJ Mieyal, DW Starke, SA Gravina, C Dothey and JS Chung, Biochemistry 30 (1991) 6088–6097.

    Google Scholar 

  184. DA Hillson, N Lambert and RB Freedman, Meth. Enzymol. 107 (1984) 281–300.

    CAS  Google Scholar 

  185. JE Morin and JE Dixon, Meth. Enzymol. 113 (1985) 541–547.

    CAS  Google Scholar 

  186. PT Varandani in Mechanisms of Oxidizing Enzymes, TP Singer and RN Ondarza (eds), Elsevier, Amsterdam, 1978, pp. 29–35.

    Google Scholar 

  187. RB Freedman and DA Hillson in The Enzymology of Post-translational Modification of Proteins, RB Freedman and HC Hawkins (eds), Academic Press, New York, 1980, Vol I, pp. 157–212.

    Google Scholar 

  188. S Bjelland, K Wallevik, J Kroll, JE Dixon, JE Morin, RB Freedman et al., Biochim. Biophys. Acta 747 (1983) 197–199.

    Google Scholar 

  189. RB Freedman, Trend Bioch. Sci. 9 (1984) 438–441.

    CAS  Google Scholar 

  190. JC Edman, L Ellis, RW Blacher, RA Roth and WJ Rutter, Nature 317 (1985) 267–270.

    Google Scholar 

  191. JI Morris and PT Varandani, Biochim. Biophys. Acta 949 (1988) 169–180.

    CAS  Google Scholar 

  192. R Roth and S Pierce, Biochemistry 26 (1987) 4179–4182.

    CAS  Google Scholar 

  193. J Koivu and R Mullyla, J. Biol. Chem. 262 (1987) 6159–6164.

    CAS  Google Scholar 

  194. JR Wetterau, KA Combs, SN Spinner and BJ Joiner, J. Biol. Chem. 265 (1990) 9800–9807.

    CAS  Google Scholar 

  195. T Obata, S Kitagawa, QH Gong and I Pastan, J. Biol. Chem. 263 (1988) 782–785.

    CAS  Google Scholar 

  196. M Geeth-Habib, R Novia, HA Kaplan and WJ Lennarz, Cell 54 (1988) 1053–1060.

    Google Scholar 

  197. TE Creighton, DA Hillson and RB Freedman, J. Mol. Biol. 142 (1990) 43–48.

    Google Scholar 

  198. HC Hawkins, M deNardi and RB Freedman, Biochem. J. 275 (1991) 1991–1998.

    Google Scholar 

  199. JC Bardwell, K McGovern and J Beckwith, Cell 67 (1991) 581–589.

    Google Scholar 

  200. DM Ziegler and LL Poulson, Trend Biol. Sci. 2 (1977) 79–81.

    CAS  Google Scholar 

  201. WW Wells, DP Xu, Y Yang and PA Rocque, J. Biol. Chem. 265 (1990) 153–157.

    Google Scholar 

  202. VP Pigiet and BJ Schuster, Proc. Natl. Acad. Sci. USA 83 (1986) 7643–7647.

    CAS  Google Scholar 

  203. HC Hawkins, EC Blackburn and RB Freedman, Biochem J. 275 (1991) 349–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Gilbert, H.F. (1997). Thiol/disulfide exchange and redox potentials of proteins. In: Lenaz, G., Milazzo, G. (eds) Bioelectrochemistry of Biomacromolecules. Bioelectrochemistry: Principles and Practice, vol 5. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9179-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9179-0_5

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9936-9

  • Online ISBN: 978-3-0348-9179-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics