Skip to main content

Structure, chemical reactivity and electromagnetic properties of nucleic acids

  • Chapter
Bioelectrochemistry of Biomacromolecules

Abstract

Nucleic acids and proteins may be considered the most significant biomacromolecules. While nucleic acids carry genetic information and represent the project of life, proteins provide the means of executing it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. JD Watson, NH Hopkins, JW Roberts, JA Steitz and AM Weiner, Molecular Biology of the Gene, The Benjamin/Cummings Publishing Co., Menlo Park (1987).

    Google Scholar 

  2. J Lewin, Genes, J Wiley and Sons, New York (1987).

    Google Scholar 

  3. DB Davies, W Saenger and SS Danyluk (eds), Structural Molecular Biology: Methods and Applications, NATO-ASI Ser. A, Plenum Press, New York (1982) Vol. 45.

    Google Scholar 

  4. A Kornberg, DNA Synthesis, Freeman Publishing, San Francisco (1974).

    Google Scholar 

  5. POP Ts’o in Basic Principles of Nucleic Acid Chemistry, POP Ts’o (ed), Academic Press, New York (1974) Vol. I, p. 453.

    Google Scholar 

  6. PTollin, HR Wilson and DW Young, Nature 217 (1968) 1148.

    Google Scholar 

  7. AEV Haschemeyer and A Rich, J. Mol. Biol. 27 (1967) 369.

    CAS  Google Scholar 

  8. A Saran, D Perahia and B Pullman, Theor. Chim. Acta 30 (1973) 31.

    CAS  Google Scholar 

  9. RE Dickerson, J. Mol. Biol. 166 (1983) 419.

    CAS  Google Scholar 

  10. RE Dickerson, Sci. Amer. 249 (1983) 3.

    Google Scholar 

  11. RE Dickerson and HR Drew, J. Mol. Biol. 149 (1981) 761.

    CAS  Google Scholar 

  12. HR Drew and RE Dickerson, J. Mol. Biol. 151 (1981) 535.

    CAS  Google Scholar 

  13. HR Drew and RE Dickerson, J. Mol. Biol. 152 (1981) 723.

    CAS  Google Scholar 

  14. W Fuller, MHF Wilkins, HR Hamilton and S Arnott, J. Mol. Biol. 12 (1965) 60.

    CAS  Google Scholar 

  15. FM Pohl and TM Jovin, J. Mol. Biol. 67 (1972) 375.

    CAS  Google Scholar 

  16. AH-J Wang, GJ Quigley, FJ Kolpak, GA van der Marel, JH van Boom and A Rich, Science 211 (1980) 171.

    Google Scholar 

  17. J Feigon, AH-J Wang, GA van der Marel, JH van Boom and A Rich, Science 230 (1985) 82.

    Google Scholar 

  18. AH-J Wang, RV Gessner, GA van der Marel, JH van Boom and A Rich, Proc. Natl. Acad. Sci. USA 82 (1985) 3611.

    CAS  Google Scholar 

  19. ATAnsevinandAH Wang, Nucl. Acids Res. 18(1990)6119.

    Google Scholar 

  20. J Marmur, R Rownd and CL Schildkraut, Progr. Nucl. Acid Res. Mol. Biol. 1 (1963) 231.

    CAS  Google Scholar 

  21. W Guschlbauer, Nucleic Acid Structure, Springer-Verlag, Heidelberg (1976).

    Google Scholar 

  22. J Marmur and P Doty, J Mol. Biol. 5 (1962) 109.

    CAS  Google Scholar 

  23. CL Schildkraut and S Lifson, Biopolymers 3 (1965) 195.

    CAS  Google Scholar 

  24. WS Yen and RD Balke, Biopolymers 19 (1980) 681.

    CAS  Google Scholar 

  25. A A Travers and A Klug in DNA Topology and Its Biological Effects, NR Cozzarelli and JC Wang (eds), Cold Spring Harbor Lab. Press (1990) p. 57.

    Google Scholar 

  26. AA Travers, Ann. Rev. Biochem. 58 (1989) 427.

    CAS  Google Scholar 

  27. JA Rice, DM Crothers, AL Pinto and J Lippard, Proc. Natl Acad. Sci. USA 85 (1988) 4158.

    CAS  Google Scholar 

  28. L Marrot and M Leng, Biochemistry (USA) 28 (1989) 1454.

    CAS  Google Scholar 

  29. NC Stellwagen, Biochemistry (USA) 22 (1983) 6186.

    CAS  Google Scholar 

  30. JC Marini, R Weisberg and A Landy, Virology 83 (1977) 254.

    Google Scholar 

  31. JC Marini, SD Levene, DM Crothers and PT Englund, Proc. Natl Acad. Sci. USA 79 (1982)7664.

    Google Scholar 

  32. JC Marini, PN Eflfron, TC Goodman, CK Singleton, RD Wells, RM Wartell and PT Englund, J. Biol. Chem. 259 (1984) 8974.

    CAS  Google Scholar 

  33. HM Wu and DM Crothers, Nature 308 (1984) 509.

    CAS  Google Scholar 

  34. S Diekmann and JC Wang, J. Mol. Biol. 186 (1985) 1.

    CAS  Google Scholar 

  35. EN Trifonov, CRC Crit. Rev. Biochem. 19 (1985) 89.

    CAS  Google Scholar 

  36. H-S Koo, H-M Wu and DM Crothers, Nature 320 (1986) 501.

    Google Scholar 

  37. DM Crothers, TE Haran and JG Nadeu, J. Biol. Chem. 265 (1990) 7093.

    CAS  Google Scholar 

  38. J Vinograd, J Lebowitz, R Radloff, R Watson and P Laipis, Proc. Natl Acad. Sci. USA 53 (1965) 1104.

    Google Scholar 

  39. DMJ Lilley, Chem. Soc. Rev. 18 (1989) 53.

    CAS  Google Scholar 

  40. W Saenger, Principles of Nucleic Acid Structure, Springer-Verlag, New York (1983).

    Google Scholar 

  41. WR Bauer, Ann. Rev. Biophys. Bioenerg. 7 (1978) 287.

    CAS  Google Scholar 

  42. DMJ Lilley, Topics Nucl. Acid Struct. 2 (1982) 173.

    Google Scholar 

  43. JC Wang, J Cell Sci. Suppl. 1 (1984) 21.

    CAS  Google Scholar 

  44. RD Wells, J. Biol. Chem. 263 (1988) 1095.

    Google Scholar 

  45. MD Frank-Kamenetskii in DNA Topology and Its Biological Effects, JC Wang and N Cozzarelli (eds), Cold Spring Harbor Lab. Press (1990) p. 185.

    Google Scholar 

  46. DMJ Lilley, Biochem. Soc. Trans. 14 (1984) 211.

    Google Scholar 

  47. DMJ Lilley, KM Sullivan and AIH Murchie in Nucleic Acids and Molecular Biology, F Eckstein and DMJ Lilley (eds), Springer-Verlag, Berlin (1987) Vol. 1, p. 126.

    Google Scholar 

  48. S Diekmann and DMJ Lilley, Nucl. Acids Res. 15 (1987) 5765.

    CAS  Google Scholar 

  49. K Nejedly, J Klysik and E Palecek, FEBS Lett. 243 (1989) 313.

    CAS  Google Scholar 

  50. TM Jovin, DM Soumpasis and LP Mcintosh, Ann. Rev. Phys. Chem. 38 (1987) 521.

    CAS  Google Scholar 

  51. MJ McLean and RD Wells, Biochim. Biophys. Acta 950 (1988) 243.

    CAS  Google Scholar 

  52. VI Lyamichev, SM Mirkin and MD Frank-Kamenetskii, J. Biomol. Struct. Dyn. 3 (1986) 667.

    Google Scholar 

  53. BH Johnston, Science 241 (1988) 1800.

    CAS  Google Scholar 

  54. M Frank-Kamenetskii, Nature 342 (1989) 737.

    CAS  Google Scholar 

  55. TR Cech, Nature 332 (1989) 777.

    Google Scholar 

  56. VI Lyamichev, SM Mirkin, ON Danilevskaya, ON Voloshin, SV Balatskaya, VN Dob- rynin, S Filippov and MD Frank-Kamenetskii, Nature 339 (1989) 634.

    Google Scholar 

  57. WI Sundquist and A Klug, Nature 342 (1989) 825.

    CAS  Google Scholar 

  58. IG Panyutin, OI Kovalsky, EI Budowsky, RE Dickerson, ME Rikhirev and A A Lipanov, Proc. Natl Acad. Sci. USA 87 (1990) 867.

    CAS  Google Scholar 

  59. JH van de Sande, NB Ramsing, MW Germann, W Elhorst, BW Kalisch, E von Kitzing, RT Pon, RM Clegg andTM Jovin, Science 241 (1988) 551.

    Google Scholar 

  60. NB Ramsing andTM Jovin, Nucl. Acids Res. 16 (1988) 6659.

    Google Scholar 

  61. TH Eickbush and EN Mondrianakis, Cell 13 (1978) 295.

    CAS  Google Scholar 

  62. YuM Yevdokimov, SG Skuridin and VI Salyanov, Liquid Crystals 3 (1988) 1443.

    Google Scholar 

  63. C Robinson, Tetrahedron 13 (1961) 219.

    CAS  Google Scholar 

  64. E Iizuka, Polymer J. 9 (1977) 173.

    CAS  Google Scholar 

  65. VN Potaman, DC Alexeev, IYa Skuratovsky, AZ Rabinovich and LS Shlyakhtenko, Nucl. Acids Res. 9 (1981) 55.

    Google Scholar 

  66. RL Rill, PR Hillard and GC Levy, J. Biol. Chem. 258 (1983) 250.

    CAS  Google Scholar 

  67. F Livolant, Eur. J. Cell Biol. 33 (1984) 300.

    CAS  Google Scholar 

  68. R Huey and SC Mohr, Biopolymers 20 (1981) 2533.

    CAS  Google Scholar 

  69. LS Lerman, Proc. Natl. Acad. Sci. USA 68 (1971) 1886.

    Google Scholar 

  70. YuM Evdokimov, Al Platonov, AS Tikhonenko and YaM Vashavsky, FEBS Lett. 23 (1972) 180.

    Google Scholar 

  71. YuM Evdokimov, TL Pyatigorskaya, VA Kadykov, OF Polyvtsev, J Doskocil, J Koudelka and YaM Varshavsky, Nucl. Acids Res. 3 (1976) 1533.

    Google Scholar 

  72. YuM Evdokimov, SG Skuridin, VI Salyanov, G Damaschun, H Damaschun, R Missselwitz and V Kleinwachter, Biophys. Chem. 35 (1990) 143.

    Google Scholar 

  73. LS Lerman, LS Wilkerson, JH Venable, Jr and BH Robinson, J. Mol. Biol. 108 (1976) 271.

    Google Scholar 

  74. F Livolant, AM Levelut, J Doucet and JP Benoit, Nature 339 (1989) 724.

    CAS  Google Scholar 

  75. DE Pettijohn in Nucleic Acids and Molecular Biology, F Eckstein and DMJ Lilley (eds), Springer-Verlag, Berlin Heidelberg (1990), Vol. 4, p. 152.

    Google Scholar 

  76. R Sinden and DE Pettijohn, Proc. Natl Acad. Sci USA 78 (1981) 224.

    CAS  Google Scholar 

  77. K Drlica and J Rouviere-Janiv, Microbiol. Rev. 51 (1987) 301.

    CAS  Google Scholar 

  78. DE Pettijohn, J. Biol. Chem. 263 (1988) 12793.

    CAS  Google Scholar 

  79. RD Kornberg, Science 184 (1974) 868.

    CAS  Google Scholar 

  80. RD Kornberg, Ann. Rev. Biochem. 46 (1977) 931.

    CAS  Google Scholar 

  81. JT Finch, LC Lutter, D Rhodes, RS Brown, B Bushton, M Lewitt and A Klug, Nature 269 (1977) 29.

    Google Scholar 

  82. AD Mirzabekov and A Rich, Proc. Natl Acad. Sci. USA 76 (1979) 1118.

    Google Scholar 

  83. A Worcel, Cold Spring Harb. Symp. Quant. Biol. 42 (1978) 313.

    CAS  Google Scholar 

  84. JT Finch and A Klug, Proc. Natl Acad. Sci. USA 73 (1976) 1897.

    Google Scholar 

  85. AL Olins, Cold Spring Harb. Symp. Quant. Biol. 42 (1978) 325.

    CAS  Google Scholar 

  86. A Worcel, S Strogatz and D Riley, Proc. Natl Acad. Sci. USA 78 (1981) 1461.

    Google Scholar 

  87. J Sedat and L Manuelidis, Cold Spring Harb. Symp. Quant. Biol. 42 (1978) 331.

    CAS  Google Scholar 

  88. TR Cech and BL Bass, Ann. Rev. Biochem. 55 (1987) 599.

    Google Scholar 

  89. TR Cech, Science 236 (1987) 1532.

    CAS  Google Scholar 

  90. CC Sheldon, AC Jeffries, C Davies and RH Symons in Nucleic Acids and Molecular Biology, F Eckstein and DMJ Lilley (eds), Springer-Verlag, Berlin Heidelberg (1990) Vol. 4, p. 227.

    Google Scholar 

  91. K Hall, P Cruz and MJ Chamberlin, Arch. Biochem. Biophys. 236 (1984) 47.

    Google Scholar 

  92. HH Klump andTM Jovin, Biochemistry (USA) 26 (1987) 5186.

    Google Scholar 

  93. CC Hardin, DA Zarling, JD Puglisi, MO Trulson, PW Davis and I Tinoco Jr., Biochemistry (USA) 26 (1987) 5191.

    CAS  Google Scholar 

  94. CWA Pleij, K Rietveld and L Bosch, Nucl. Acids Res. 13 (1985) 1717.

    Google Scholar 

  95. P Dumas, D Moras, C Florentz, R Giege, P Verlaan, A Van Belkum and CWA Pleij, J. Biomol. Struct. Dyn. 4 (1987) 707.

    CAS  Google Scholar 

  96. JD Puglisi, JR Wyatt and 1 Tinoco Jr, Nature 321 (1988) 283.

    Google Scholar 

  97. A Bhattacharyya, AIH Murchie and DMJ Lilley, Nature 343 (1990) 484.

    Google Scholar 

  98. F Cramer, Progr. Nucl. Acid Res. Mol. Biol. 11 (1971) 391.

    CAS  Google Scholar 

  99. S-H Kim, GJ Quigley, FL Suddath, A McPherson, D Sneden, JJ Kim, J Weinzierl and A Rich, Science 179 (1973) 285.

    Google Scholar 

  100. A Rich, Acc. Chem. Res. 10 (1977) 388.

    CAS  Google Scholar 

  101. Rich and S-H Kim, Sci. Amer. 238 (1978) 52.

    Google Scholar 

  102. PR Schimmel and AG Redfield, Ann. Rev. Biophys. Bioenerg. 9 (1980) 181.

    CAS  Google Scholar 

  103. S-H Kim in Topics in Molecular and Structural Biology, S Neidle and W Fuller (eds), Vol. l,p. 83.

    Google Scholar 

  104. J Lake, Ann. Rev. Biochem. 54 (1985) 507.

    CAS  Google Scholar 

  105. PD Lawley, Progr. Nucl. Acid Res. Mol. Biol. 5 (1966) 89.

    CAS  Google Scholar 

  106. C. Helene and NT Thuong in Nucleic Acids and Molecular Biology, F Eckstein and DMJ Lilley (eds), Springer-Verlag, Berlin (1988), Vol. 2, p. 105.

    Google Scholar 

  107. DM Brown in Basic Principles in Nucleic Acid Chemistry, POP. Ts’O (ed), Academic Press, New York (1974).

    Google Scholar 

  108. PB Dervan in Structure and Methods, RH Sarma and MH Sarma (eds) Adenine Press, Schenectady (1990) Vol. 1, p. 37.

    Google Scholar 

  109. VV Vlassov, SA Gaidamakov, VF Zarytova, DG Knorre, AS Levina, AA Nikonova, LM Podust and OS Fedorova, Gene 72 (1988) 313.

    Google Scholar 

  110. PE Nielsen, J. Mol. Recog. 3 (1990) 1.

    CAS  Google Scholar 

  111. L Ehrenberg, I Fedorcsak and F Solymosy, Progr. Nucl. Acid Res. Mol. Biol. 16 (1976) 198.

    Google Scholar 

  112. PM Scholten and A Nordheim, Nucl. Acids Res. 14 (1986) 3981.

    CAS  Google Scholar 

  113. JC Furlong and DM Lilley, Nucl. Acids Res. 14 (1986) 3995.

    CAS  Google Scholar 

  114. N Vogt, N Rousseau, M Leng and B Malfoy, J. Biol. Chem. 263 (1988) 11826.

    CAS  Google Scholar 

  115. C Jeppesen and PE Nielsen, FEBS Lett. 231 (1988) 172.

    CAS  Google Scholar 

  116. MJ McLean and MJ Waring, J. Mol. Recog. 1 (1988) 138.

    CAS  Google Scholar 

  117. DE Gilbert, GA van der Marel, JH van Boom and J Feigon, Proc. Natl Acad. Sci. USA 86 (1989) 3006.

    CAS  Google Scholar 

  118. A Vincze, REL Hinderson, FF McDonald and NJ Leonard, J Amer. Chem. Soc. 95 (1973) 2677.

    Google Scholar 

  119. DP Ringer, S Burchett and DE Kizer, Biochemistry (USA), 17 (1978) 4818.

    CAS  Google Scholar 

  120. DS Gross and H Simpkins, J. Biol. Chem. 256 (1981) 9593.

    CAS  Google Scholar 

  121. D Gersanovski, P Colson, C Houssier and E Fredericq, Biochim. Biophys. Acta 824 (1985) 313.

    CAS  Google Scholar 

  122. M Arquilla, LM Thompson, LF Pearlman and H Simpkins, Cancer Res. 43 (1983) 1211.

    Google Scholar 

  123. C Houssier, MC DePauw-Gillet, R Hacha and E Fredericq, Biochim, Biophys. Acta 739 317.

    Google Scholar 

  124. Z Balcarová and V Brabec, Biophys. Chem. 33 (1989) 55.

    Google Scholar 

  125. E Paleček, P Boubliková, F Jelen, A Krejčova, E. Makaturová, K. Nejedlý, P Pečinka and M Vojtišková in Structure and Methods, RH Sarma and MH Sarma (eds), Adenine Press, Schenectady, 1990, Vol. 3: DNA and RNA, p. 237.

    Google Scholar 

  126. LR Subbaraman, J Subbaraman and EJ Behrman, Bioinorg. Chem. 1 (1971) 35.

    CAS  Google Scholar 

  127. E Lukasova, M. Vojtiskova, F. Jelen, T. Sticzay and E Palecek, Gen. Physiol. Biophys. 3 (1984) 175.

    CAS  Google Scholar 

  128. E Paleček and MA Hung, Anal. Biochem. 132 (1983) 236.

    Google Scholar 

  129. H Htun and JE Dahlberg, Science 241 (1988) 1791.

    CAS  Google Scholar 

  130. K Kayasuga, T Hahimoto, T Negishi, K Negishi and H Hayatsu, Chem. Pharm. Bull. (Tokyo) 28 (1980) 932.

    Google Scholar 

  131. DS Kang and RD Wels, J. Biol. Chem. 260 (1985) 7783.

    CAS  Google Scholar 

  132. DMJ Lilley, Nucl. Acids Res. 11 (1983) 3097.

    CAS  Google Scholar 

  133. Y Kohwi and T Kohwi-Shigematsu, Proc Natl Acad. Sci. USA 85 (1988) 3781.

    CAS  Google Scholar 

  134. G Rodighiero and G Dall’Acqua, Photochem. Photobiol. 24 (1976) 647.

    CAS  Google Scholar 

  135. JE Hearst, ST Isaacs, D Kanne, H Rapoport and K Straub, Quart. Rev. Biochem. 17 (1984) 1.

    CAS  Google Scholar 

  136. GD Cimino, HB Gamper, ST Isaacs and JE Hearst, Ann. Rev. Biochem. 54 (1985) 1151.

    Google Scholar 

  137. D Kanne, K Straub, JE Hearst and H Rapoport, J. Amer. Chem. Soc. 104 (1982) 6754.

    CAS  Google Scholar 

  138. L Kittler and G Lober, Studia Biophys. 97 (1983) 61.

    CAS  Google Scholar 

  139. DC Youvan and JE Hearst, Anal. Biochem. 119 (1982) 86.

    CAS  Google Scholar 

  140. D Rabin and DM Crothers, Nucl. Acids Res. 7 (1979) 689.

    CAS  Google Scholar 

  141. JM Sogo, PJ Ness, RM Widmer, RW Parish and T Koller, J Mol. Biol. 178 (1984) 897.

    CAS  Google Scholar 

  142. JE Hearst, Ann. Rev. Biophys. Bioenerg. 10 (1981) 69.

    CAS  Google Scholar 

  143. TR Cech and ML Pardue, Proc. Natl Acad. Sci. USA 73 (1976) 2644.

    Google Scholar 

  144. RR Sinden and DE Pettijohn, Proc. Natl Acad. Sci. USA 78 (1981) 224.

    CAS  Google Scholar 

  145. PD Lawley and P Brookes, Biochem. J. 89 (1963) 127.

    CAS  Google Scholar 

  146. ON Voloshin, SM Mirkin, VI Lyamichev, BP Belotserkovskii and MD Frank-Kamenetskii, Nature 333 (1988) 475.

    Google Scholar 

  147. U Siebenlist and W Gilbert, Proc. Natl Acad. Sci. USA 77 (1980) 122.

    CAS  Google Scholar 

  148. C Heuer and W Hillen, J. Mol. Biol. 202 (1988) 407.

    CAS  Google Scholar 

  149. TD Tullius, Nature 332 (1988) 663.

    CAS  Google Scholar 

  150. RP Hertzberg and PB Dervan, Biochemistry (USA) 23 (1984) 3934.

    CAS  Google Scholar 

  151. M Sawadogo and RG Roeder, Cell 43 (1985) 165.

    CAS  Google Scholar 

  152. TE Goyne and DS Sigman, J. Amer. Chem. Soc. 109 (1987) 2846.

    Google Scholar 

  153. LE Pope, KA Reich, DR Graham and DS Sigman, J. Biol. Chem. 257 (1982) 12121.

    CAS  Google Scholar 

  154. J Stube and JW Kozarich, Chem. Rev. 87 (1987) 1107.

    Google Scholar 

  155. MD Kuwabara, C Yoon, T Goyne, T Thederahn and DS Sigman, Biochemistry (USA) 25 (1986) 7401.

    Google Scholar 

  156. DS Sigman, Acc. Chem. Res. 19 (1986) 180.

    CAS  Google Scholar 

  157. LE Marshall, DR Graham, KA Reich and DS Sigman, Biochemistry (USA) 20 (1981) 244.

    Google Scholar 

  158. LE Pope and DS Sigman, Proc. Natl Acad. Sci. USA 81 (1984) 3.

    CAS  Google Scholar 

  159. PE Nielsen, C Jeppesen and O Buchardt, FEBS Lett. 235 (1988) 122.

    Google Scholar 

  160. TD Tullius, Ann. Rev. Biophys. Biophys. Chem. 18 (1989) 213.

    CAS  Google Scholar 

  161. J Portugal, Chem.-Biol. Interactions 71 (1989) 311.

    CAS  Google Scholar 

  162. C-HB Chen and DS Sigman, J. Amer. Chem. Soc. 110 (1988) 6570.

    CAS  Google Scholar 

  163. A Joachimiak, RL Kelley, RP Gunsalus, C Yanofsky and PB Sigler, Proc. Natl Acad. Sci. USA 80 (1983) 668.

    CAS  Google Scholar 

  164. GB Dreyer and PB Dervan, Proc. Natl Acad. Sci. USA 82 (1985) 968.

    CAS  Google Scholar 

  165. PG Schultz, JS Taylor and PB Dervan, J. Amer. Chem. Soc. 104 (1982) 6861.

    Google Scholar 

  166. PE Pjura, K Grezeskowiak and RE Dickerson, J. Mol. Biol. 197 (1987) 257.

    CAS  Google Scholar 

  167. ME Davis and JA McCammon, Chem. Rev. 90 (1990) 509.

    CAS  Google Scholar 

  168. F Daniels and RA Alberty, Physical Chemistry, John Wiley and Sons, New York (1975).

    Google Scholar 

  169. B Pullman (ed), Intermolecular Interactions: From Diatomic to Biopolymers; John Wiley and Sons, Chichester (1978).

    Google Scholar 

  170. A Beiser, Perspectives of Modern Physics, McGraw-Hill-Kogahusha Ltd, Tokyo (1969).

    Google Scholar 

  171. B Pullman and A Pullman, Quantum Biochemistry, Interscience Publishers, New York (1963).

    Google Scholar 

  172. G Del Re in Electronic Aspects of Biochemistry, B Pullman (ed), Academic Press, New York (1964) p. 221.

    Google Scholar 

  173. PW Atkins, Physical Chemistry, Oxford University Press, Oxford (1990).

    Google Scholar 

  174. F Jordan and B Pullman, Theor. Chim. Acta (Berlin) 9 (1968) 242.

    CAS  Google Scholar 

  175. G Naray-Szabo (ed), Theoretical Chemistry of Biological Systems, Elsevier, Amsterdam (1986).

    Google Scholar 

  176. M Orozco and FJ Luque, J. Computer-Aided Molec. Des. 4 (1990) 411.

    CAS  Google Scholar 

  177. B Pullman, Molecular Biophysics, Academic Press, New York (1965), pp. 137, 156.

    Google Scholar 

  178. H Devoe and I Tinoco Jr., J. Mol. Biol. 4 (1962) 500.

    CAS  Google Scholar 

  179. JS Kwiatkowski and WB Person in Theoretical Biochemistry and Molecular Biophysics, DL Beveridge and R Lavery (eds), Adenine Press, Schenectady (1991), Vol. 1, p. 153.

    Google Scholar 

  180. I Kulalowska, M Geller, B Lesyng and KL Wierzchowski, Biochim. Biophys. Acta 361 (1974)119.

    Google Scholar 

  181. Kulalowska, M Geller, B Lesyng, K Bolewska and KL Wierzchowski, Biochim. Biophys. Acta 407(1975)420.

    Google Scholar 

  182. H Berthold and B Pullmann, Biochem. Biophys. Res. Commun. 46 (1972) 125.

    Google Scholar 

  183. POP Ts’o in Fine Structure of Proteins and Nucleic Acids, Biol Macromol. Series, GF Fasman and SN Timasheff (eds), Marcel Dekker, New York (1969), Vol. 4, p. 164.

    Google Scholar 

  184. MG Papadopoulos and J Waite, J. Mol. Struct. (Theochem) 171 (1988) 189.

    Google Scholar 

  185. R Bonaccorsi, A Pullman, E Scrocco and J Tomasi, Theor. Chim. Acta (Berlin) 24 (1972) 51.

    CAS  Google Scholar 

  186. A Pullman and B Pullman in Chemical Applications of Atomic and Molecular Electrostatic Potentials, P Politzer and DG Truhlar (eds), Plenum Press, New York (1981), p. 381.

    Google Scholar 

  187. J Tomasi in Molecular Interactions, H. Ratajczak and WJ Orville-Thomas (eds), John Wiley and Sons, New York (1982), Vol. 3, p. 119.

    Google Scholar 

  188. S Miertus and M Trebaticka, J. Theor. Biol. 108 (1984) 509.

    CAS  Google Scholar 

  189. A Pullman and B Pullman, J. Sci. Industr. Res. 39 (1980) 778.

    CAS  Google Scholar 

  190. GA Walker, SC Bhatia and JH Hall Jr., J. Amer. Chem. Soc. 109 (1987) 7629.

    CAS  Google Scholar 

  191. JE Del Bene, J. Phys. Chem. 87 (1983) 367.

    Google Scholar 

  192. R Wagner and W von Philipsborn, Helv. Chim. Acta 54 (1971) 1543.

    Google Scholar 

  193. MW Kilday, J. Res. Natl Bur. Stand. (USA) 83 (1978) 347.

    CAS  Google Scholar 

  194. RL Benoit and M Frechette, Can. J. Chem. 62 (1984) 995.

    CAS  Google Scholar 

  195. RM Izatt. JJ Christensen and JH Rytting, Chem. Rev. 71 (1971) 439.

    Google Scholar 

  196. JJ Christensen, JH Rytting and RM Izatt, Biochemistry 9 (1970) 4907.

    Google Scholar 

  197. W Guschlbauer in Encyclopedia of Polymer Science and Engineering, Mark-Bikales- Overberger-Menges (eds), John Wiley and Sons, New York (1988), p. 699.

    Google Scholar 

  198. RF Steiner and RF Beers Jr., Polynucleotides, Elsevier, Amsterdam (1961)

    Google Scholar 

  199. GD Fasman (ed), Handbook of Biochemistry and Molecular Biology, Chem. Rubber Co., Cleveland, Ohio (1975) Vol. 1, Nucleic Acids, p. 76.

    Google Scholar 

  200. F Jordan, Biopolymers 13 (1974) 289.

    CAS  Google Scholar 

  201. A Goldblum and B Pullman, Theor. Chim. Acta (Berlin) 47 (1978) 345.

    CAS  Google Scholar 

  202. B Pullman, A Goldblum and H Berthold, Biochem. Biophys. Res. Commun. 77 (1977) 1166.

    Google Scholar 

  203. A Katchalsky, Biophys. J. 4 (1964) 9.

    CAS  Google Scholar 

  204. B Jayaram, KA Sharp and B Honig, Biopolymers 28 (1989) 975.

    Google Scholar 

  205. GR Pack, G Lamm, L Wong and D Clifton in Theoretical Biochemistry and Molecular Biophysics, DL Beveridge and R Lavery (eds), Adenine Press, Schenectady (1991), Vol. l, p. 237.

    Google Scholar 

  206. FH Hausheer, UCh Singh, TC Palmer and JD Saxe, J. Amer. Chem. Soc. 112 (1990) 9468.

    Google Scholar 

  207. ChA Hunter, J. Mol. Biol. 230 (1993) 1025.

    Google Scholar 

  208. H DeVoe in Structure and Stability of Biological Macromolecules, SN Timasheff and GD Fasman (eds), Marcel Dekker, Inc., New York (1969) p. 1.

    Google Scholar 

  209. PH von Hippel and T Schleich in Structure and Stability of Biological Macromolecules, SN Timasheff and GT Fasman (eds), Marcel Dekker, New York (1969), p. 417.

    Google Scholar 

  210. VI Poltev in Theoretical Biochemistry and Molecular Biophysics, DL Beveridge and R Lavery (eds), Adenine Press, Schenectady (1991), Vol. 1, p. 247.

    Google Scholar 

  211. POP Ts’o, IS Melvin and AC Olson, J. Amer. Chem. Soc. 85 (1963) 1289.

    Google Scholar 

  212. SI Chain, MP Schweizer, POP Ts’o and GK Helmkamp, J. Amer. Chem. Soc. 86 (1964) 4182.

    Google Scholar 

  213. C.R. Calladine and H.R. Drew, Understanding DNA, Academic Press, London (1992).

    Google Scholar 

  214. POP Ts’o, NS Kondo, RK Robins and AD Broom, J. Amer. Chem. Soc. 91 (1961) 5625.

    Google Scholar 

  215. FE Evans, DW Miller and RA Levine, J. Biomol. Struct. Dyn. 3 (1986) 935.

    CAS  Google Scholar 

  216. R Tribolet and H Sigel, Eur. J. Biochem. 170 (1988) 617.

    CAS  Google Scholar 

  217. W Guschlbauer, J-F Chanton and D Thiele, J. Biomol. Struct. Dyn. 8 (1990) 491.

    CAS  Google Scholar 

  218. ECM Chen and ESD Chen, Biochem. Biophys. Res. Commun. 171 (1990) 97.

    CAS  Google Scholar 

  219. FE Evans and RH Sarma, Biopolymers 13 (1974) 2117.

    CAS  Google Scholar 

  220. E Plisiewicz, E Stepien and KL Wierzchowski, Nucl. Acids Res. 3 (1976) 1295.

    Google Scholar 

  221. T Imoto, Biochim. Biophys. Acta 475 (1977) 409.

    CAS  Google Scholar 

  222. EL Farquhar, M Downing and SL Gill, Biochemistry 7 (1968) 1224.

    Google Scholar 

  223. KE Van Holde and GP Rossetti, Biochemistry 6 (1967) 2189.

    Google Scholar 

  224. Y Kyogoku, RC Lord and A Rich, J. Amer. Chem. Soc. 89 (1967) 496.

    CAS  Google Scholar 

  225. H Iwahashi and Y Kyogoku, J. Amer. Chem. Soc. 99 (1977) 7761.

    CAS  Google Scholar 

  226. 226.A D’Albis, MP Wickens and WB Gratzler, Biopolymers 14 (1975) 1423.

    Google Scholar 

  227. J Langlet, C Giessner-Prettre, B Pullman, P Claverie and D Piazzola, Int. J. Quant. Chem. 18 (1980) 421.

    CAS  Google Scholar 

  228. O Sinanoglu in Molecular Associations in Biology, B Pullman (ed), Academic Press, New York (1968), p. 427.

    Google Scholar 

  229. G Nemethy and HA Scheraga, J. Chem. Phys. 36 (1962) 3401.

    CAS  Google Scholar 

  230. D Porschke and F Eggers, Eur. J. Biochem. 26 (1972) 490.

    CAS  Google Scholar 

  231. KJ Neurohr and HH Mantsch, Can. J. Chem. 57 (1979) 1986.

    Google Scholar 

  232. B Pullman, S Miertus and D Perahia, J. Theor. Biol. 50 (1979) 317.

    CAS  Google Scholar 

  233. R Lavey, A Pullman and B Pullman, Biophys. Chem. 17 (1983) 75.

    Google Scholar 

  234. A Goldblum, D Perahia and A Pullman, FEBS Lett. 91 (1978) 213.

    Google Scholar 

  235. I Yamaguchi and C Nagata, J. Theor. Biol. 69 (1977) 693.

    CAS  Google Scholar 

  236. GHF Diercksen, WP Kraemer, and BO Roos, Theor. Chim. Acta 36 (1975) 249.

    CAS  Google Scholar 

  237. W Kolos, Theor. Chim. Acta 51 (1979) 219.

    CAS  Google Scholar 

  238. WL Jorgensen, J. Amer. Chem. Soc. 101 (1979) 2001.

    Google Scholar 

  239. S Neidle in Theoretical Biochemistry and Molecular Biophysics, DL Beveridge and R Lavery (eds), Adenine Press, Schenectady (1991), Vol. 1, p. 207.

    Google Scholar 

  240. J Bertran, J Theor. Biol. 34 (1972) 353.

    CAS  Google Scholar 

  241. V I Poltev and SM Shulga, Studia Biophys. 70 (1978) 51.

    CAS  Google Scholar 

  242. ZG Kudritskaya and KI Danilov, J. Theor. Biol. 59 (1976) 303.

    CAS  Google Scholar 

  243. J Sponer, R Burcl and P Hobza, J. Biomol. Struct. Dyn. 11 (1994) 1375.

    Google Scholar 

  244. RL Ornstein, R Rein, DL Breen and R MacElroy, Biopolymers 17 (1978) 2341.

    Google Scholar 

  245. IK Yanson, AB Teplitsky and LF Sukhodub, Biopolymers 18 (1979) 1149.

    Google Scholar 

  246. C Salet, R Bensasson and RS Beiker, Photochem. Photobiol. 30 (1979) 325.

    CAS  Google Scholar 

  247. DM Soumpasis, A Garcia, R Klement and T Jovin in Theoretical Biochemistry and Molecular Biophysics, DL Beveridge and R Lavery (eds), Adenine Press, Schenectady (1991) Vol. l,p. 343.

    Google Scholar 

  248. V Kleinwachter, Z Balcarova and J Bohacek, Biochim. Biophys. Acta 174 (1969) 188.

    CAS  Google Scholar 

  249. DR Robinson and ME Grant, J. Biol. Chem. 241 (1966) 4030.

    CAS  Google Scholar 

  250. L Constantino and V Vitagliano, Biochim. Biophys. Acta 134 (1967) 204.

    Google Scholar 

  251. S Diekmann, W Hillen, B Morgeneyer, M Jung, RD Wells and D Porschke, Biophys. Chem. 15 (1982) 157.

    CAS  Google Scholar 

  252. M Eigen and G Schwarz, in Electrolytes, B Pesce (ed), Pergamon Press, Oxford (1962), p. 309.

    Google Scholar 

  253. D Porschke, Biophys. Chem. 22 (1985) 237.

    CAS  Google Scholar 

  254. D Porschke, Ann. Rev. Phys. Chem. 36 (1985) 159.

    CAS  Google Scholar 

  255. M Hogan, N Dattagupta and DM Crothers, Proc. Natl Acad. Sci. USA 75 (1978) 195.

    CAS  Google Scholar 

  256. M Pollak and HA Glick, Biopolymers 16 (1977) 1007.

    CAS  Google Scholar 

  257. S Diekmann and D Porschke, Biophys. Chem. 16 (1982) 261.

    CAS  Google Scholar 

  258. R de Levie, Chem. Rev. 88 (1988) 599.

    Google Scholar 

  259. V Vetterl, Experientia 21 (1965) 9.

    CAS  Google Scholar 

  260. H Jehring, Elektrosorptionsanalyse mit der Wechselstrompolarographie, Akademie- Verlag, Berlin (1974), p. 159.

    Google Scholar 

  261. YM Temerk, P Valenta and HW Nurnberg, J. Electroanal. Chem. 109 (1980) 289.

    CAS  Google Scholar 

  262. H Kinoshita, SD Christian, MH Kim, JG Baker and G Dryhurst in Electrochemical Studies of Biological Systems, ACS Symposium Series, T Sawyer (ed), American Chemical Society (1977), No. 38, p. 113.

    Google Scholar 

  263. G Quarin, Electrochim. Acta 29 (1984) 1707.

    Google Scholar 

  264. E Paleček, Collect. Czech. Chem. Commun. 39 (1974) 3449.

    Google Scholar 

  265. V Brabec and E Palecek, J. Electroanal. Chem. 88 (1978) 373.

    CAS  Google Scholar 

  266. P Valenta, HW Nurnberg and P Klahre, Bioelectrochem. Bioenerg. 1 (1974) 487.

    CAS  Google Scholar 

  267. F Jelen and E Palecek, Gen. Physiol. Biophys. 4 (1985) 219.

    CAS  Google Scholar 

  268. E Palecek in Topics in Bioelectrochemistry and Bioenergetics, G Milazzo (ed), J Wiley, London (1983), Vol. 5, p. 65.

    Google Scholar 

  269. I.R. Miller, J. Mol Biol. 3 (1961) 357.

    CAS  Google Scholar 

  270. E Palecek, Bioelectrochem. Bioenerg. 20 (1988) 179.

    CAS  Google Scholar 

  271. E Fredericq and C Houssier, Electric Dichroism and Electric Birefringence, Clarendon Press, Oxford (1973).

    Google Scholar 

  272. Ch Kittel, Uvod do fyziky pevnych latek (Introduction in the Physics of Solid Substances), Academia, Praha(’l985).

    Google Scholar 

  273. M Hanss and JC Bernengo, Biopolymers 12 (1973) 2151.

    CAS  Google Scholar 

  274. A Surowiec, Biopolymers 17 (1978) 2279.

    CAS  Google Scholar 

  275. KR Foster and HP Schwan in CRC Handbook of Biological Effects of Electromagnetic Fields, Ch Polk and E Postow (eds), Boca Raton, Florida (1987) p. 27.

    Google Scholar 

  276. AG Walton and J Blackwell, Biopolymers, Academic Press, New York (1973).

    Google Scholar 

  277. F van derTouw and M Mandel, Biophys. Chem. 2 (1974) 231.

    Google Scholar 

  278. M Merabet andTK Bose, J. Phys. Chem. 92 (1988) 6149.

    Google Scholar 

  279. KS Cole and RH Cole, J. Chem. Phys. 9 (1941) 341.

    CAS  Google Scholar 

  280. STakashima, J. Phys. Chem. 70 (1966) 1372.

    Google Scholar 

  281. S Takashima, Biopolymers 4 (1966) 663.

    CAS  Google Scholar 

  282. S Takashima, Biopolymers 5 (1967) 899.

    CAS  Google Scholar 

  283. MS Tung, RJ Molinari, RH Cole and JH Gibbs, Biopolymers 16 (1977) 2653.

    Google Scholar 

  284. RJ Molinari, RH Cole and JH Gibbs, Biopolymers 20 (1981) 977.

    Google Scholar 

  285. A Bonincontro, C Cametti, A Di Basio and F Pedone, Biophys. J. 45 (1984) 495.

    CAS  Google Scholar 

  286. S Takashima, Biopolymers 12 (1973) 145.

    CAS  Google Scholar 

  287. A Bonincontro, C Cametti, A Di Basio and F Pedone, Biopolymers 25 (1986) 241.

    Google Scholar 

  288. D Vasilescu in Physico-chemical Properties of Nucleic Acids, J. Duchesne (ed), Academic Press, London (1973) Vol. l,p. 31.

    Google Scholar 

  289. E Šubertová, J Bok, P Říhák, V Prosser and E Silinsh, Phys. Stat. Sol. (a) 18 (1973) 741.

    Google Scholar 

  290. E Subertova, E Silinsh and V Prosser, Czech. J. Phys. B 23 (1973) 356.

    CAS  Google Scholar 

  291. V Baumruk, J Kocka, J Kristofik and E Subertova, Czech. J. Phys. B 35 (1985) 670.

    CAS  Google Scholar 

  292. E Subertova, V Prosser and J Drobnik, Biopolymers 8 (1969) 421.

    Google Scholar 

  293. V Prosser et al., Experientdlni metody biofyziky (Experimental Methods of Biophysics), Academia, Praha (1989).

    Google Scholar 

  294. DD Eley, NC Lockhart and NC Richardson, J. Chem. Trans. Farad. Soc. 1, 75 (1979) 232.

    Google Scholar 

  295. E Jelinkova, J Laudat and P Hana, Cs. Cas. Fyz. A 3 (1986) 382.

    Google Scholar 

  296. DD Eley and RB Leslie, Nature 197 (1963) 898.

    CAS  Google Scholar 

  297. E Subertova, J Laudat and J Plasek, Studia Biophys. 96 (1983) 43.

    CAS  Google Scholar 

  298. RS Snart. Biopolymers 6 (1968) 293.

    CAS  Google Scholar 

  299. CT O’Konski, P Moser and M Shirai, Biopolymers 1 (1964) 479.

    Google Scholar 

  300. J Laudat, E Jelinkova, M Neubert, R Bakule, J Nedbal, V Prosser, Materials Science 10 (1984)176.

    Google Scholar 

  301. J Polonski, P Douzou and Ch Sadron, Biophys. Molecul. 250 (1960) 3414.

    Google Scholar 

  302. P Douzou, J-C Franco, J Polonski and Ch Sadron, Biophys. Molecul. 251 (1960) 976.

    CAS  Google Scholar 

  303. CT O’Konski and M Shirai, Biopolymers 1 (1963) 557.

    Google Scholar 

  304. AL Stanford, Jr., and RA Lorey, Nature 219 (1968) 1250.

    Google Scholar 

  305. RG Kepler, Ann. Rev. Chem. 29 (1978) 497.

    CAS  Google Scholar 

  306. D Vasilescu and G Mesnard, C. R. Acad. Sci. Paris 260 (1965) 4843.

    CAS  Google Scholar 

  307. S Toulsky and M Read, C. R. Acad. Sci. Paris 260 (1965) 7030.

    CAS  Google Scholar 

  308. E Fukada and Y Ando, J. Pol. Sci. 10(1972)565.

    Google Scholar 

  309. MH Shamos and LS Lavine, Nature 213 (1967) 267.

    CAS  Google Scholar 

  310. E Fukada, Ultrasonics (1968) 229.

    Google Scholar 

  311. MM Long and DW Urry in Molecular Biology, Biochemistry and Biophysics, E Grell (ed), Springer-Verlag, Berlin (1981), Vol. 31, p. 143.

    Google Scholar 

  312. H Fritzsche, L Kittler, G Lober, KE Reinert, D Tresselt, H Triebel und C Zimmer, Strukturuntersuchungen an Bipolymeren mit spektroskopischen und hydrodynamischen Methoden, Akademie-Verlag, Berlin (1976).

    Google Scholar 

  313. E Charney, The Molecular Basis of Optical Activity, Optical Rotary Dispersion and Circular Dichroism, John Wiley, Interscience, New York (1979).

    Google Scholar 

  314. F Snatzke and G Snatzke in Analytiker-Taschenbuch, H Kienitz, R Bock, W Fresenius, W Huber and G Tolg (eds), Springer-Verlag, Berlin (1980), Vol. 1, p. 217.

    Google Scholar 

  315. J Brahms and S Brahms in Fine Structure of Proteins and Nucleic Acids, Biological Macromolecular Series, GD Fasman and SN Timasheff (eds) Marcel Dekker, New York (1970), p. 191.

    Google Scholar 

  316. K Imahori and K Watanabe, J. Polymer Sci. Part C 30 (1970) 633.

    Google Scholar 

  317. WC Johnson Jr., Ann. Rev. Phys. Chem. 29 (1978) 93.

    CAS  Google Scholar 

  318. W Guschlbauer, Ch Marck and D Thiele in Structural Aspects of Biomolecules, R Srivasan and V Pattabhi (eds), Madras (1978) p. 228.

    Google Scholar 

  319. J Kypr and M Vorlickova, J. Biomol. Struct. Dynam. 3 (1990) 67.

    Google Scholar 

  320. H Frohlich in The Fluctuating Enzyme, GR Welch (ed), John Wiley, New York (1986), p. 421.

    Google Scholar 

  321. AS Davydov, Physica Scripta 20 (1979) 1387.

    Google Scholar 

  322. AC Scott, Phys. Sci. 25 (1982) 651.

    CAS  Google Scholar 

  323. F Kremer, A Poglitsch, L Genzel in Nonlinear Electrodynamics in Biological Systems, WR Adey and AF Lawrence (eds), Plenum Press, New York (1984), p. 177.

    Google Scholar 

  324. F Keilmann and W Grundler in Nonlinear Electrodynamics in Biological Systems, WR Adey and AF Lawrence (eds), Plenum Press, New York (1984) p. 59.

    Google Scholar 

  325. E Postow and ML Swicord in CRC Handbook of Biological Effects of Electromagnetic Fields, C Polk and E Postow (eds), Boca Raton, Florida (1987) p. 425.

    Google Scholar 

  326. GS Edwards, CC Davis, JD Saffer and ML Swicord, Phys. Rev. Lett. 53 (1984) 1284.

    Google Scholar 

  327. GS Manning in Theoretical Biochemistry and Molecular Biophysics, DL Beveridge and R Lavery (eds), Adenine Press, Schenectady (1991) Vol. 1, p. 191.

    Google Scholar 

  328. LL Van Zandt and ME Davis, J. Biomol. Struct. Dynam. 3 (1986) 1045.

    Google Scholar 

  329. MB Hakim, SM Linsay and J Powell, Biopolymers 23 (1984) 1185.

    Google Scholar 

  330. J Torbet and G Maret, Biopolymers 20 (1981) 2657.

    CAS  Google Scholar 

  331. J-M Freyssinet, J Torbet, G Hudry-Clergeon and G Maret, Proc. Natl Acad. Sci. USA 80 (1983) 1616.

    Google Scholar 

  332. J Torbet and MJ Dickens, FEBS Lett. 173 (1984) 403.

    CAS  Google Scholar 

  333. E Iizuka, J. Appl. Polymer Sci., Appl. Polymer Symp. 41 (1985) 131.

    CAS  Google Scholar 

  334. GV Maret, M. Schickfus, A Mayer and K Dransfeld, Phys. Rev. Lett. 35 (1975) 397.

    CAS  Google Scholar 

  335. J Torbet and M-C Ronzuiere, Biochem. J. 219 (1984) 1057.

    Google Scholar 

  336. A Dobek and A Patkowski, J. Polymer Sci., Polymer Symp. 61 (1977) 111.

    CAS  Google Scholar 

  337. J Torbet and MY Norton, FEBS Lett. 147 (1982) 201.

    CAS  Google Scholar 

  338. J Torbet, EMBO J. 2 (1983) 63.

    CAS  Google Scholar 

  339. MJ Azanza, BH Blott, A del Moral and MT Peg, Biochem. Bioenerg. 30 (1993) 43.

    Google Scholar 

  340. Veillard, B Pullman and G Berthier, C. R. Acad. Sci. 252 (1961) 2321.

    Google Scholar 

  341. EW Bastiaan, C MacLean, PCM Van Zijl and AA Bothner-By, Ann. Rev. NMR Spectr. 19(1987)35.

    Google Scholar 

  342. M Schindler, J. Amer. Chem. Soc. 110 (1988) 6623.

    CAS  Google Scholar 

  343. M Schindler, Magn. Res. Chem. 26 (1988) 394.

    CAS  Google Scholar 

  344. FA Bovey, High Resolution NMR of Macromolecules, Academic Press, New York (1972) p. 26.

    Google Scholar 

  345. G Maret and K Dransfeld, Physica 86–88B (1977) 1077.

    Google Scholar 

  346. E Neumann, Prog. Biophys. Molec. Biol. 47 (1986) 197.

    CAS  Google Scholar 

  347. D Porschke in Structure and Dynamics of Biopolymers, C. Nicolini (ed), Martinus Nijhoff Publishers (1987) p. 66.

    Google Scholar 

  348. D Porschke, J. Biomol. Struct. Dynam. 4 (1986) 373.

    CAS  Google Scholar 

  349. FS Allen and KE Van Holde, Biopolymers 10 (1971) 865.

    CAS  Google Scholar 

  350. Da-Wen Ding, R Rill and KE Van Holde, Biopolymers 11 (1972) 2109.

    Google Scholar 

  351. E Charney and JB Milstien, Biopolymers 17 (1978) 1629.

    CAS  Google Scholar 

  352. E Charney, J. Biosci. 8 (1985) 517.

    CAS  Google Scholar 

  353. S Diekmann and D Porschke, Biophys. Chem. 26 (1987) 207.

    CAS  Google Scholar 

  354. D Porschke in Structural Molecular Biology, DB Davies, W Saenger and S Danyluk (eds), Plenum Press, New York (1982) p. 222.

    Google Scholar 

  355. D Porschke and M Jung, J. Biomol. Struct. Dynam. 2 (1985) 1173.

    Google Scholar 

  356. D Porschke, Biopolymers 15 (1976) 1917.

    CAS  Google Scholar 

  357. K Yoshioka, K Kikuchi and M Fujimori, Biophys. Chem. 11 (1980) 369.

    CAS  Google Scholar 

  358. D Porschke in Molecular Electro-Optics, S Krause (ed), Plenum Press, New York (1981) p. 269.

    Google Scholar 

  359. D Porschke, JH Meier and J Ronnenberg, Biophys. Chem. 20 (1984) 225.

    CAS  Google Scholar 

  360. S Diekmann and D Porschke, Biophys. Chem. 26 (1987) 207.

    CAS  Google Scholar 

  361. J Antosiewicz, MV German, JH van de Sande and D Porschke, Biopolymers 27 (1988) 1319.

    Google Scholar 

  362. J Antosiewicz and D Porschke, J. Biomol. Struct. Dynam. 5 (1988) 819.

    CAS  Google Scholar 

  363. K. Yamaoka and K Fukudome, J. Phys. Chem. 92 (1988) 4994.

    CAS  Google Scholar 

  364. JAB Lohman and C MacLean, Chem. Phys. 35 (1978) 269.

    CAS  Google Scholar 

  365. JAB Lohman and C MacLean, Chem. Phys. 43 (1979) 144.

    Google Scholar 

  366. J Dadok and AA Bothner-By, private communication (1990).

    Google Scholar 

  367. PCM van Zijl, C MacLean and AA Bothner-By, J. Chem. Phys. 83 (1985) 4410.

    Google Scholar 

  368. AA Bothner-By, C Gayathri, PCM van Zijl, C MacLean, JJ Lai and KM Smith, Magn. Reson. Chem. 23 (1985) 935.

    CAS  Google Scholar 

  369. F Canac, C. R.Acad. Sci. 196 (1933) 51.

    CAS  Google Scholar 

  370. M Avrami, J. Chem. Phys. 8 (1940) 212.

    CAS  Google Scholar 

  371. M Fleischmann and HR Thirsk, Adv. Electrochem. Eng. 3 (1963) 123.

    CAS  Google Scholar 

  372. R Sridharan and R de Levie, J. Phys. Chem. 86 (1982) 4489.

    Google Scholar 

  373. R Sridharan and R de Levie, J. Electroanal. Chem. 218 (1987) 287.

    Google Scholar 

  374. U Retter, J. Electroanal. Chem. 106 (1980) 371.

    CAS  Google Scholar 

  375. U Retter, J. Electroanal. Chem. 136 (1982) 167.

    CAS  Google Scholar 

  376. R Philipp, J Dittrich, U Retter and E Muller, J. Electroanal. Chem. 250 (1988) 159.

    CAS  Google Scholar 

  377. C Buess-Herman, J. Electroanal. Chem. 186 (1985) 41.

    Google Scholar 

  378. H Francois, M Scharfe and C Buess-Herman, J. Electroanal. Chem. 296 (1990) 415.

    CAS  Google Scholar 

  379. CH Mousty and G Quarin, Electrochim. Acta 35 (1990) 1291.

    Google Scholar 

  380. L Pospisil, J. Phys. Chem. 92 (1988) 2501.

    Google Scholar 

  381. T Wandlowski and L Pospisil, J. Electroanal. Chem. 270 (1989) 319.

    CAS  Google Scholar 

  382. B Bhattachaijee and SK Rangarajan, J. Electroanal. Chem. 302 (1991) 207.

    Google Scholar 

  383. V Brabec, MH Kim, SD Christian and G Dryhurst, J. Electroanal. Chem. 100 (1979) 111.

    CAS  Google Scholar 

  384. V Brabec, SD Christian and G Dryhurst J. Electroanal. Chem. 85 (1977) 389.

    CAS  Google Scholar 

  385. D Krznaric, P Valenta, HW Nurnberg and M Brancia, J. Electroanal. Chem. 93 (1978) 41.

    CAS  Google Scholar 

  386. YM Temerk, MM Kamal, ME Ahmed and ZA Ahmed, Biochem. Bioenerg. 16 (1986) 497.

    CAS  Google Scholar 

  387. EG Thomas, C Buess-Herman and L Gierst, J. Electroanal. Chem. 214 (1986) 597.

    CAS  Google Scholar 

  388. C Buess-Herman, L Gierst, M Gonze and F Silva, J. Electroanal. Chem. 226 (1987) 267.

    CAS  Google Scholar 

  389. U Retter, V Vetterl and J Jursa, J. Electroanal. Chem. 274 (1989) 1.

    CAS  Google Scholar 

  390. T Wandlowski, J. Electroanal. Chem. 302 (1991) 233.

    CAS  Google Scholar 

  391. V Vetterl, Bioelectrochem. Bioenerg. 3 (1976) 338.

    CAS  Google Scholar 

  392. E Koglin, JM Sequaris and P Valenta, J. Mol. Struct. 60 (1980) 421.

    CAS  Google Scholar 

  393. JM Sequaris, J Fritz, H Lewinsky and E Koglin, J. Colloid Interfac. Sci. 105 (1985) 417.

    CAS  Google Scholar 

  394. V Brabec and K Niki, Biophys. Chem. 23 (1985) 63.

    CAS  Google Scholar 

  395. V Brabec and K Niki, Collect. Czechosl. Chem. Commun. 51 (1986) 167.

    CAS  Google Scholar 

  396. C Otto, TJJ van den Tweel, FFM de Mul and J Greve, J. Raman Spectr. 17 (1986) 289.

    Google Scholar 

  397. MW Humpreys and R. Parsons, J. Electroanal. Chem. 75 (1977) 427.

    Google Scholar 

  398. MW Humpreys and R. Parsons, J. Electroanal. Chem. 82 (1977) 369.

    Google Scholar 

  399. C-G Golander, H Arwin, JC Eriksson, I Lundstrom and R Larsson, Colloids and Surfaces 5 (1982) 1.

    Google Scholar 

  400. HW Nurnberg in Bioelectrochemistry 1, G Milazzo and M Blank (eds) Plenum Press (1983) p. 183.

    Google Scholar 

  401. J Heesemann and HP Zingsheim in Membrane Spectroscopy, E Grell (ed), Springer- Verlag, Berlin (1981) p. 172.

    Google Scholar 

  402. YR Shen, Nature 337 (1989) 519.

    CAS  Google Scholar 

  403. DJ Blackwood and S Pons, J Electroanal. Chem. 247 (1988) 277.

    CAS  Google Scholar 

  404. H Neddermeyer, Crit. Rev. Solid State and Material Sci. 16 (1990) 309.

    Google Scholar 

  405. LA Nagahara, T Thundat, PI Oden and SM Lindsay, Ultramicroscopy 33 (1990) 107.

    Google Scholar 

  406. RJ Driscoll, MG Youngquist and JD Baldeschwieler, Nature 346 (1990) 294.

    Google Scholar 

  407. WM Heckl and DPE Smith, J. Vac. Sci. Technol. B 9 (1991) 1159.

    Google Scholar 

  408. WM Heckl, DPE Smith, G Binnig, H Klagges, TW Hansch and J Maddocks, Proc. Natl Acad. Sci. USA 88 (1991) 8003.

    CAS  Google Scholar 

  409. WM Heckl, Thin Solid Films 210 /211 (1992) 640.

    Google Scholar 

  410. A Schaper, Lia T Pietrasanta and TJ Jovin, Nucleic Acids Res. 21 (1993) 6004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Brabec, V., Kleinwächter, V., Vetterl, V. (1997). Structure, chemical reactivity and electromagnetic properties of nucleic acids. In: Lenaz, G., Milazzo, G. (eds) Bioelectrochemistry of Biomacromolecules. Bioelectrochemistry: Principles and Practice, vol 5. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9179-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9179-0_1

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9936-9

  • Online ISBN: 978-3-0348-9179-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics