Skip to main content

Effect of DNA methylation on the binding of vertebrate and plant proteins to DNA

  • Chapter
DNA Methylation

Part of the book series: EXS ((EXS,volume 64))

Abstract

Many studies have shown correlations between increased gene expression and decreased DNA methylation (e.g., Sullivan et al., 1989; Piva et al., 1989; Shinar et al., 1989; Jahroudi et al., 1990; Burbelo et al., 1990). The demethylation associated with gene expression has been found either in localized sites or in extensive regions. When the tissue-specific demethylation is localized, it may be in the upstream regulatory regions, at the 5′ end of the gene, in an intron, or in the 3′ flanking region of the gene (Jump et al., 1987; Broad et al., 1989; Lamson and Stockdale, 1989; Umeno et al., 1988; Sullivan et al., 1989). Sometimes the localized demethylation occurring before or concomitantly with the activation of transcription is followed by a more generalized demethylation of the gene region (Umeno et al., 1988; Sullivan et al., 1989; Blackman and Koshland, 1985; Toth et al., 1989). In other cases, all the detected demethylation occurred before or concurrently with the onset of transcription (Lamson and Stockdale, 1989; Benvenisty et al., 1985; Saluz et al., 1988). However, for some genes, the demethylation associated with the activation of transcription was detected only after the turn on of the gene (Lock et al., 1987; Enver et al., 1988). In the latter cases, DNA methylation may just help keep a switched-off gene region silent. Another possibility is that the demethylation of critical mCpGs that preceded the turn on of transcription may have been missed because only a small fraction of CpG sites in the gene region (usually only 5′-CCGG-3′ [HpaII] or 5′-GCGC-3′ [HhaI] sites) were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avvedimento, E. V., Obici, S., Sanchez, M., Gallo, A., Musti, A., and Gottesman, M. E. (1989) Reactivation of thyroglobulin gene expression in transformed thyroid cells by 5-azacytidine. Cell58, 1135–1142.

    Article  PubMed  CAS  Google Scholar 

  • Bakker, A., and Smith, D. W. (1989) Methylation of GATC sites is required for precise timing between rounds of DNA replication in Escherichia coli. J. Bacteriol. 171, 5738–5742.

    PubMed  CAS  Google Scholar 

  • Banks, J. A., Masson, P., and Fedoroff, N. (1988) Molecular mechanisms in the develop-mental regulation of the maize suppressor-mutator transposable element. Genes Dev. 2, 1364–1380.

    Article  PubMed  CAS  Google Scholar 

  • Barras, F., and Marinus, M. G. (1989) The great GATC: DNA methylation in E. coli. Trends Genet. 5, 139–143.

    Article  CAS  Google Scholar 

  • Becker, P. B., Ruppert, S., and Schütz, G. (1987) Genomic footprinting reveals cell type- specific DNA binding of ubiquitous factors. Cell 51, 435–443.

    Article  PubMed  CAS  Google Scholar 

  • Bednarik, D. P., Cook, J. A., and Pitha, P. M. (1990) Inactivation of the HIV LTR by DNA CpG methylation: evidence for a role in latency. EMBO J. 9, 1157–1164.

    PubMed  CAS  Google Scholar 

  • Ben-Hattar, J., Beard, P., and Jiricny, J. (1989) Cytosine methylation in CTF and Spi recognition sites of an HSV tk promoter: effects on transcription in vivo and on factor binding in vitro. Nucl. Acids Res. 17, 10179–10190.

    Article  PubMed  CAS  Google Scholar 

  • Benvenisty, N., Szyf, M., Mencher, D., Razin, A., and Reshef, L. (1985) Tissue-specific hypomethylation and expression of rat phosphoenolpyruvate carboxykinase gene induced by in vivo treatment of fetuses and neonates with 5-azacytidine. Biochemistry 24, 5015–5019.

    Article  PubMed  CAS  Google Scholar 

  • Benvenisty, N., Mencher, D., Meyuhas, O., Razin, A., and Reshef, L. (1985) Sequential changes in DNA methylation patterns of the rat phosphoenolpyruvate carboxykinase gene during development. Proc. Natl. Acad. Sci. USA82, 267–271.

    Article  PubMed  CAS  Google Scholar 

  • Blackman, M. A., and Koshland, M. E. (1985) Specific 5’ and 3’ regions of the μ-chain gene are undermethylated at distinct stages of B-cell differentiation. Proc. Natl. Acad. Sci. USA82, 3809–3813.

    Article  PubMed  CAS  Google Scholar 

  • Blyn, L. B., Braaten, B. A., and Low, D. A. (1990) Regulation of pap pilin phase variation by a mechanism involving differential Dam methylation states. EM BO J. 9, 4045–4054.

    PubMed  CAS  Google Scholar 

  • Boyes, J., and Bird, A. (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64, 1123–1134.

    Article  PubMed  CAS  Google Scholar 

  • Breznik, T., Traina-Dorge, V., Gama-Sosa, M., Gehrke, C. W., Ehrlich, M., Medina, Butel, J. S., and Cohen, J. C. (1984) Mouse mammary tumor virus DNA methylation: tissue-spe- cific variation. Virology 136, 69–77.

    Article  PubMed  CAS  Google Scholar 

  • Broad, P. M., Symes, A. J., Thakker, R. V., and Craig, R. K. (1989) Structure and methylation of the human calcitonin/aCGRP gene. Nucl. Acids Res.17, 6999–7011.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, J. E., and Roberts, R. (1982). Modification profiles of bacterial genomes.Nucl. Acids Res.10, 913–934.

    Article  PubMed  CAS  Google Scholar 

  • Burbelo, P., Horikoshi, S., and Yamada, Y. (1990) DNA methylation and collagen IV gene expression in F9 teratocarcinoma cells. J. Biol. Chem.265, 4839–4843.

    PubMed  CAS  Google Scholar 

  • Comb, M., and Goodman, H. M. (1990) CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucl. Acids Res. 18, 3975–3982.

    Article  PubMed  CAS  Google Scholar 

  • Cone, K. C., Burr, F. A., and Burr, B. (1986) Molecular analysis of the maize anthocyanin regulatory locus CL Proc. Natl. Acad. Sci. USA 83, 9631–9635.

    Article  CAS  Google Scholar 

  • Courey, A. J., and Tjian, R. (1988) Analysis of Spl in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55, 887–898.

    Article  PubMed  CAS  Google Scholar 

  • Creusot, G., Acs, G., and Christman, J. K. (1982) Inhibition of DNA methyltransferase and induction of friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2’-deoxy- cytidine. J. Biol. Chem. 257, 2041–2048.

    PubMed  CAS  Google Scholar 

  • Dennis, E. S., and Brettell, R. I. S. (1990) DNA methylation of maize transposable elements is correlated with activity. Phil. Trans. R. Soc. Lond. 326, 217–229.

    Article  CAS  Google Scholar 

  • Desrosiers, R. C., Mulder, C., and Fleckenstein, B. (1979) Methylation of herpesvirus saimiri DNA in lymphoid tumor cell lines. Proc. Natl. Acad. Sci. USA 76, 3839–3843.

    Article  PubMed  CAS  Google Scholar 

  • Dikstein, R., Faktor, O., Ben-Levy, R., and Shaul, Y. (1990) Functional organization of the hepatitis B virus enhancer.Mol. Cell. Biol.10, 3683–3689.

    PubMed  CAS  Google Scholar 

  • Dobrovic, A., Gareau, J. L., Ouellette, G., and Bradley, W. E. (1988) DNA methylation and genetic inactivation at thymidine kinase locus: two different mechanisms for silencing autosomal genes. Som. Cell Mol. Genet.14, 55–68.

    Article  CAS  Google Scholar 

  • Dobrzanski, P., Hoeveler, A., and Doerfler, W. (1988) Inactivation by sequence-specific methylations of adenovirus promoters in a cell-free transcription system. J. Virol.62, 3941–3946.

    PubMed  CAS  Google Scholar 

  • Doerfler, W. (1991) Patterns of DNA methylation—evolutionary vestiges of foreign DNA inactivation as a host defense mechanism. Biol. Chem. Hoppe-Seyler 372, 557–564.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, K. C., Carey, J. W., and Ehrlich, M. (1992) A broad bean DNA clone encoding a protein resembling mammalian CREB in its sequence specificity and DNA methylation- sensitivity. Gene 117, 169–178.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, K. C., and Ehrlich, M. (1990) Highly repeated sites in the apolipoprotein(a) gene recognized by methylated DNA-binding protein, a sequence-specific DNA-binding protein. Mol. Cell. Biol. 10, 4957–4960.

    PubMed  CAS  Google Scholar 

  • Ehrlich, M., Gama-Sosa, M. A., Carreira, L. H., Ljungdahl, L. G., Kuo, D. C, and Gehrke, C. W. (1985) DNA methylation in thermophilic bacteria: N4-methylcytosine, and N6- methyladenine. Nucl. Acids Res.13, 1399–1412.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, M., Gama-Sosa, M. A., Huang, L.-H., Midgett, R. M., Kuo, K. C., McCune, R. A., and Gehrke, C. (1982). Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucl. Acids Res.10, 2709–2721.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, M, Norris, K. F., Wang, R. Y.-H., Kuo, D. C, and Gehrke, C. W. (1986) DNA cytosine methylation and heat-induced deamination.Bioscience Rep. 6, 387–393.

    Article  CAS  Google Scholar 

  • Ehrlich, M., and Wang, R. Y.-H. (1981) 5-methylcytosine in eukaryotic DNA.Science 212, 1350–1357.

    Google Scholar 

  • Enver, T., Zhang, J., Papayannopoulou, T., and Stamatoyannopoulos, G. (1988) DNA methylation: a secondary event in globin gene switching? Genes Devel. 2, 698–706.

    Article  PubMed  CAS  Google Scholar 

  • Evans, T., DeChiara, T., and Efstratiadis, A. (1988) A promoter of the rat insulin-like growth factor II gene consists of minimal control elements. J. Mol. Biol.199, 61–81.

    Article  PubMed  CAS  Google Scholar 

  • Faber, S., Ip, T., Granner, D., and Chalkley, R. (1991) The interplay of ubiquitous DNA-binding factors, availability of binding sites in the chromatin, and DNA methylation in the differential regulation of phosphoenolpyruvate carboxykinase gene expression. Nucl. Acids Res. 19, 4681–4688.

    Article  PubMed  CAS  Google Scholar 

  • Falzon, M., and Kuff, E. L. (1991) Binding of the transcription factor EBP-80 mediates the methylation response of an intracisternal A-particle long terminal repeat promoter. Mol. Cell. Biol. 77, 117–125.

    Google Scholar 

  • Gama-Sosa, M. A., Midgett, M., Slagel, V. A., Githens, S., Kuo, K. C., Gehrke, C. W., and Ehrlich, M. (1983) Tissue-specific differences in DNA methylation in various mammals. Biochim. Biophys. Acta740, 212–219.

    PubMed  CAS  Google Scholar 

  • Gama-Sosa, M. A., Wang, R. Y.-H., Kuo, K. C., Gehrke, C. W., and Ehrlich, M. (1983) The 5-methylcytosine content of highly repeated sequences in human DNA. Nucl. Acids Res.11, 3087–3095.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, A. D., Ostapchuk, P., and Hearing, P. (1991) Methylation-dependent and -indepen-dent DNA binding of nuclear factor EF-C. Virology 182, 857–860.

    Article  PubMed  CAS  Google Scholar 

  • Gentz, R., Rauscher, III, F. J., Abate, C., and Curran, T. (1989) Parallel association of Fos and Jun leucine zippers juxtaposes DNA binding domains. Science243, 1695–1699.

    CAS  Google Scholar 

  • Gierl, A., Lütticke, S., and Saedler, H. (1988) TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. EMBO J. 7, 4045–4053.

    PubMed  CAS  Google Scholar 

  • Giuliano, G., Pichersky, E., Malik, M. P., Scolnik, P. A., and Cashmore, A. R. (1988) An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc. Natl. Acad. Sei. USA 85, 7089–7093.

    Article  CAS  Google Scholar 

  • Goeddel, D. V., Yansura, D. G., and Caruthers, M. H. (1978) How lac repressor recognizes lac operator. Proc. Natl. Acad. Sei. USA 75, 3578–3582.

    Article  CAS  Google Scholar 

  • Grant, S. G., and Chapman, V. M. (1988) Mechanisms of X-chromosome regulation. Annu. Rev. Genet. 22, 199–233.

    Article  PubMed  CAS  Google Scholar 

  • Gruenbaum, Y., Naveh-Many, T., Cedar, H., and Razin, A. (1981) Sequence specificity of methylation in higher plant DNA. Nature 292, 860–862.

    Article  PubMed  CAS  Google Scholar 

  • Guntaka, R. V., Gowda, S., Wagner, H., and Simon, D. (1987) Methylation of the enhancer region of avian sarcoma virus long terminal repeat suppresses transcription. FEBS Lett. 221, 332–336.

    Article  PubMed  CAS  Google Scholar 

  • Hai, T., Liu, F., Coukos, W., and Green, M. (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper protein able to selectively form DNA-binding hetero-dimers. Genes Devel. 3, 2083–2090.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, M. A., Jones, P. A., Imagawa, M., and Karin, M. (1988) Cytosine methylation does not affect binding of transcription factor Spl. Proc. Natl. Acad. Sei. USA 85, 2066–2070.

    Article  CAS  Google Scholar 

  • Harris, M. (1982) Induction of thymidine kinase in enzyme-deficient Chinese hamster cells. Cell 29, 483–492.

    Article  PubMed  CAS  Google Scholar 

  • Hermann, R., Hoeveler, A., and Doerfler, W. (1989) Sequence-specific methylation in a downstream region of the late E2A promoter of adenovirus type 2 DNA prevents protein binding. J. Mol. Biol.210, 411–415.

    Article  PubMed  CAS  Google Scholar 

  • Hermann, R., and Doerfler, W. (1991) Interference with protein binding at AP2 sites by sequence-specific methylation in the late E2A promoter of adenovirus type 2 DNA. FEBS Lett. 281, 191–195.

    Article  PubMed  CAS  Google Scholar 

  • Hoeffler, J. P., Meyer, T. E., Yun, Y., Jameson, J. L., and Habener, J. F. (1988) Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science 242, 1430–1433.

    Article  PubMed  CAS  Google Scholar 

  • Höller, M., Westin, G., Jiricny, J., and Schaffner, W. (1988) Spl transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev. 2, 1127–1135.

    Article  PubMed  Google Scholar 

  • Hong, J. C., Nagao, R. T., and Key, J. L. (1987) Characterization and sequence analysis of a developmentally regulated putative cell wall protein gene isolated from soybean. J. Biol. Chem. 262, 8367–8376.

    PubMed  CAS  Google Scholar 

  • Huang, L.-H., Wang, R., Gama-Sosa, M. A., Shenoy, S., and Ehrlich M. (1984) A protein from human placental nuclei binds preferentially to 5-methylcytosine-rich DNA. Nature 308, 293–295.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, H. C., Masson, N., Hones, N. C., and Lee, K. A. W. (1990) The cellular transcription factor CREB corresponds to activating transcription factor 47 (ATF-47) and forms complexes with a group of polypeptides related to ATF-43. Mol. Cell. Biol. 10, 6192–6203.

    PubMed  CAS  Google Scholar 

  • Iguchi-Ariga, S. M., and Schaffner, W. (1989) CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3, 612–619.

    Article  PubMed  CAS  Google Scholar 

  • Inamdar, N. M., Ehrlich, K. C., and Ehrlich, M. (1991) CpG methylation inhibits binding of several sequence-specific DNA-binding proteins from pea, wheat, soybean and cauliflower. Plant Mol. Biol. 17, 111–123.

    Article  PubMed  CAS  Google Scholar 

  • Ivarie, R. (1987) Thymine methyls and DNA-protein interactions. Nucl. Acids Res. 15, 9975–9983.

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch, R., Schnieke, A., and Harbers, K. (1985) Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc. Natl. Acad. Sci. USA 82, 1451–1455.

    Article  PubMed  CAS  Google Scholar 

  • Jahroudi, N., Foster, R., Price-Haughey, J., Beitel, G., and Gedamu, L. (1990) Cell-type specific and differential regulation of the human metallothionein genes. J. Biol. Chem. 265, 6506–6511.

    PubMed  CAS  Google Scholar 

  • Jones, P. A., Taylor, S. M., Mohandas, T., and Shapiro, L. J. (1982) Cell cycle-specific reactivation of an inactive X-chromosome locus by 5-azadeoxycytidine. Proc. Natl. Acad. Sci. USA 79, 1215–1219.

    Article  PubMed  CAS  Google Scholar 

  • Jost, J.-P., Saluz, H.-P., and Pawlak, A. (1991) Estradiol down regulates the binding activity of an avian vitellogenin gene repressor (MDBP-2) and triggers a gradual demethylation of the m5CpG pair of its DNA binding site. Nucl. Acids Res. 19, 5771–5775.

    Article  PubMed  CAS  Google Scholar 

  • Jost, J.-P., Saluz, H.-P., and Pawlak, A. (1991) Estradiol down regulates the binding activity of an avian vitellogenin gene repressor (MDBP-2) and triggers a gradual demethylation of the m5CpG pair of its DNA binding site. Nucl. Acids Res. 19, 5771–5775.

    Google Scholar 

  • Jost, J.-P., Saluz, H.-P., and Pawlak, A. (1991) Estradiol down regulates the binding activity of an avian vitellogenin gene repressor (MDBP-2) and triggers a gradual demethylation of the m5CpG pair of its DNA binding site. Nucl. Acids Res. 19, 5771–5775.

    Article  PubMed  CAS  Google Scholar 

  • Jump, D. B., Wong, N. C. W., and Oppenheimer, J. H. (1987) Chromatin structure and methylation state of a thyroid hormone-responsive gene in rat liver. J. Biol. Chem. 262, 778–784.

    PubMed  CAS  Google Scholar 

  • Kadonaga, J. T., Jones, K. A., and Tjian, R. (1986) Promotor-specific activation of RNA polymerase II transcription by Spl. Trends Biol. Sci. 11, 20–23.

    Article  CAS  Google Scholar 

  • Katagiri, F., Lam, E., and Chua, N.-H. (1989) Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature340, 727–730.

    Article  PubMed  CAS  Google Scholar 

  • Khan, R., Zhang, X-Y., Supakar, P. C, Ehrlich, K. C, and Ehrlich, M. (1988) Human methylated DNA-binding protein: Determinants of a pBR322 recognition site. J. Biol. Chem. 263, 14374–14383.

    PubMed  CAS  Google Scholar 

  • Knust, B., Briiggemann, U., and Doerfler, W. (1989) Reactivation of a methylation-silenced gene in adenovirus-transformed cells by 5-azacytidine or by El A trans activation. J. Virol. 63, 3519–3524.

    PubMed  CAS  Google Scholar 

  • Kovesdi, I., Reichel, R., and Nevins, J. R. (1987) Role of an adenovirus E2 promoter binding factor in El A-mediated coordinate gene control. Proc. Natl. Acad. Sci. USA 84, 2180–2184.

    Article  PubMed  CAS  Google Scholar 

  • Lamson, G., and Stockdale, F. E. (1989) Developmental and muscle-specific changes in methylation of the myosin light chain LClf and LC3f promoters during avian myogenesis. Devel. Biol. 132, 62–68.

    Article  CAS  Google Scholar 

  • Landschulz, W. H., Johnson, P. F., and McKnight, S. L. (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759–1764.

    Article  PubMed  CAS  Google Scholar 

  • Lasser, A. B., Paterson, B. M., and Weintraub, H. (1986) Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroplasts to myoblasts. Cell 47, 649–656.

    Article  Google Scholar 

  • Levy-Wilson, B., and Fortier, C. (1989) Tissue-specific undermethylation of DNA sequences at the 5’ end of the human apolipoprotein B gene. J. Biol. Chem. 264, 9891–9896.

    PubMed  CAS  Google Scholar 

  • Liu, Y.-S., and Green, M. (1988) Interaction of a common cellular transcription factor, ATF, with regulatory elements in both Ela- and cyclic AMP-inducible promotors. Proc. Natl. Acad. Sci. USA 85, 3396–3400.

    Article  Google Scholar 

  • Lock, L. F., Takagi, N., and Martin, G. R. (1987) Methylation of the hprt gene on the inactive X occurs after chromosome inactivation. Cell 48, 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Louarn, J., Francois, V., and Louarn, J.-M. (1990) Chromosome replication pattern in dam mutants of Escherichia coli. Mol. Gen. Genet. 221, 291–294.

    Article  PubMed  CAS  Google Scholar 

  • Lübbert, M., Miller, C. W., and Koeffler, H. P. (1991) Changes of DNA methylation and chromatin structure in the human myeloperoxidase gene during myeloid differentiation. Blood 78, 345–356.

    PubMed  Google Scholar 

  • Meehan, R. R., Lewis, J. D., McKay, S., Kleiner, E. L., and Bird, A. P. (1989) Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58, 499–507.

    Article  PubMed  CAS  Google Scholar 

  • Messer, W., and Noyer-Weidner, M. (1988). Timing and targeting: the biological functions of dam methylation in E. coli. Cell 54, 735–737.

    Article  PubMed  CAS  Google Scholar 

  • Mikami, K., Tabata, T., Kawata, T., Nakayama, T., and Iwabuchi, M. (1987) Nuclear protein(s) binding to the conserved DNA hexameric sequence postulated to regulate transcription of wheat histone genes. FEBS Lett. 223, 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Mikami, K., Takase, H., Tabata, T., and Iwabuchi, M. (1989) Multiplicity of the DNA-bind- ing protein HBP-1 specific to the conserved hexameric sequence ACGTCA in various plant gene promoters. FEBS Lett. 256, 67–70.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, M., and McClelland, M. (1989) Effect of site-specific methylation on DNA modification methyltransferases and restriction endonucleases. Nucl. Acids Res. 17, 389–415.

    Article  Google Scholar 

  • Noyer-Weidner, M., Diaz, R., and Reiners, L. (1986) Cytosine-specific DNA modification interferes with plasmid establishment in Escherichia coli Kl2: involvement of rgl B. Mol. Gen. Genet. 205, 469–475.

    Article  PubMed  CAS  Google Scholar 

  • Ostapchuk, P., Scheirle, G., and Hearing, P. (1989) Binding of nuclear EF-C to a functional domain of the hepatitis B virus enhancer region. Mol. Cell. Biol. 9, 2787–2797.

    PubMed  CAS  Google Scholar 

  • Pawlak, A., Bryans, M., and Jost, J.-P. (1991) An avian 40 KDa nucleoprotein binds preferentially to a promoter sequence containing one single pair of methylated CpG. Nucl. Acids Res. 19, 1029–1034.

    Article  PubMed  CAS  Google Scholar 

  • Piva, R., Kumar, L. V., Hanau, S., Maestri, I., Rimondi, A. P., Pansini, S. F., Mollica, G., Chambon, P., and del Senno, L. (1989) The methylation pattern in the 5’ end of the human estrogen receptor gene is tissue specific and related to the degree of gene expression. Biochem. Intern. 19, 267–275.

    CAS  Google Scholar 

  • Prendergast, G. C., Lawe, D., and Ziff, E. B. (1991) Association of Myn, the murine homolog of Max, with c-Myc stimulates methylation-sensitive DNA binding and Ras cotransforma- tion. Cell 65, 395–407.

    Article  PubMed  CAS  Google Scholar 

  • Rachal, M. J., Yoo, H., Becker, F. F., and Lapeyre, J.-N. (1989) In vitro DNA cytosine methylation of eis-regulatory elements modulates c-Ha-ras promoter activity in vivo. Nucl. Acids Res. 17, 5135–5147.

    Article  PubMed  CAS  Google Scholar 

  • Raleigh, E. A., and Wilson, G. (1986) Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc. Natl. Acad. Sei. USA 83, 9070–9074.

    Article  CAS  Google Scholar 

  • Roberts, D., Hoopes, B. C., McClure, W. R., and Kleckner, N. (1985) IS10 transposition is regulated by DNA adenine methylation. Cell 43, 117–130.

    Article  PubMed  CAS  Google Scholar 

  • Saluz, H. P., Feavers, I. M., Jiricny, F. J., and Jost, J. P. (1988) Genomic sequencing and in vivo footprinting of an expression-specific DNase I-hypersensitive site of avian vitellogenin II promoter reveal a demethylation of a mCpG and a change in specific interactions of proteins with DNA. Proc. Natl. Acad. Sei. USA 85, 6697–6700.

    Article  CAS  Google Scholar 

  • Schwartz, D. (1989) Gene-controlled cystosine demethylation in the promotor region of the Ac transposable element. Proc. Natl. Acad. Sei. USA 86, 2789–2793.

    Article  CAS  Google Scholar 

  • Schwartz, D., and Dennis, E. (1986) Transposase activity of the Ac controlling element in maize is regulated by its degree of methylation. Mol. Gen. Genet. 205, 476–482.

    Article  CAS  Google Scholar 

  • Seeman, N. C., Rosenberg, J. M., and Rich, A. (1976) Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl. Acad. Sei. USA 73, 804–808.

    Article  CAS  Google Scholar 

  • Shen, E. S., and Whitlock, J. P. Jr. (1989) The potential role of DNA methylation in the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Biol. Chem. 264, 17754–17758.

    PubMed  CAS  Google Scholar 

  • Shinar, D., Yoffe, O., Shani, M., and Yaffe, D. (1989) Regulated expression of muscle-specific genes introduced into mouse embryonal stem cells: inverse correlation with DNA methylation. Differentiation 41, 116–126.

    Article  PubMed  CAS  Google Scholar 

  • Shmookler-Reis, R. J., and Goldstein, S. (1982) Variability of DNA methylation patterns during serial passage of human diploid fibroblasts. Proc. Natl. Acad. Sei. USA 79, 3949–3953.

    Article  CAS  Google Scholar 

  • Staiger, D., Kaulen, H., and Schell, J. (1989) A CACGTG motif of the Antirrhinum majus chalcone synthase promoter is recognized by an evolutionarily conserved nuclear protein. Proc. Natl. Acad. Sei. USA 86, 6930–6934.

    Article  CAS  Google Scholar 

  • Sullivan, C. H., Norman, J. T., Borras, T., and Grainger, R. M. (1989) Developmental regulation of hypomethylation of crystallin genes in chicken embryo lens cells. Mol. Cell. Biol. 9, 3132–3135.

    PubMed  CAS  Google Scholar 

  • Supakar, P. C., Weist, D., Zhang, D., Inamdar, X.-Y., Khan, R., Ehrlich, K. C., and Ehrlich, M. (1988) Methylated DNA-binding protein in various mammalian cell types. Nucl. Acids Res. 16, 8029–8044.

    Article  PubMed  CAS  Google Scholar 

  • Tabata, T., Takase, H., Takayama, S., Mikami, K., Nakatsuka, A., Kawata, T., Nakayana, T., and Iwabuchi, M. (1989) A protein that binds to a eis-acting element of wheat histone genes has a leucine zipper motif. Science245, 965–966.

    Article  PubMed  CAS  Google Scholar 

  • Tapscott, S. J., Davis, R. L., Thayer, M. J., Cheng, P. F., Weintraub, H., and Lassar, A. B. (1988) MyoDl: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 242, 405–411.

    Article  PubMed  CAS  Google Scholar 

  • Tasseron-de Jong, J. G., den Dulk, H., van de Putte, P., and Giphart-Gassler, M. (1989) De novo methylation as major event in the inactivation of transfected herpesvirus thymidine kinase genes in human cells. Biochim. Biophys. Acta 1007, 215–223.

    PubMed  CAS  Google Scholar 

  • Toth, M., Müller, U., and Doerfler, W. (1990) Establishment of de novo DNA methylation patterns. J Mol. Biol. 214, 673–683.

    Article  PubMed  CAS  Google Scholar 

  • Toth, M., Lichtenberg, U., and Doerfler, W. (1989) Genomic sequencing reveals a 5-methyl- cytosine-free domain in active promoters and the spreading of preimposed methylation patterns. Proc. Natl. Acad. Sei. USA 86, 3728–3732.

    Article  CAS  Google Scholar 

  • Umeno, M., Song, B. J., Kozak, C., Gelboin, H. V., and Gonzalez, F. J. (1988) The rat P450IIE1 gene: complete intron and exon sequence, chromosome mapping, and correla-tion of developmental expression with specific 5’ cytosine demethylation. J. Biol. Chem. 263, 4956–4962.

    PubMed  CAS  Google Scholar 

  • Vanyushin, B. F., Mazin, A. L., Vasilyev, V. K., and Belozersky, A. N. (1973) The content of 5-methylcytosine in animal DNA: the species and tissue specificity. Biochim. Biophys. Acta 299, 397–403.

    PubMed  CAS  Google Scholar 

  • Venolia, L., Gartier, S. M., Wassman, E. R., Yen, P., Mohandas, T., and Shapiro, L. J. (1982) Transformation with DNA from 5-azacytidine-reactivated X chromosomes. Proc. Natl. Acad. Sei. USA 79, 2352–2354.

    Article  CAS  Google Scholar 

  • Wagner, I., and Capesius, I. (1981) Determination of 5-methylcytosine from plant DNA by high-performance liquid chromatography. Biochim. Biophys. Acta. 654, 52–56.

    PubMed  CAS  Google Scholar 

  • Wang, R.-H., Zhang, X.-Y., Khan, R., Zhou, Y., Huang, L.-H., and Ehrlich, M. (1986) Methylated DNA-binding protein from human placenta recognizes specific methylated sites on several prokaryotic DNAs. Nucl. Acids Res. 14, 9843–9860.

    Article  PubMed  CAS  Google Scholar 

  • Watt, F., and Molloy, P. L. (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev. 2, 1136–1143.

    Article  PubMed  CAS  Google Scholar 

  • Weih, F., Nitsch, D., Reik, A., Schütz, G., and Becker, P. B. (1991) Analysis of CpG methylation and genomic footprinting at the tyrosine aminotransferase gene: DNA methylation alone is not sufficient to prevent protein binding in vivo. EMBO J. 10, 2559–2567.

    PubMed  CAS  Google Scholar 

  • Winter, H., Rentrop, M., Nischt, R., and Schweizer, J. (1990) Tissue-specific expression of murine keratin K13 in internal stratified squamous epithelia and its aberrant expression during two-stage mouse skin carcinogenesis is associated with the methylation state of a distinct CpG site in the remote 5-flanking region of the gene. Differentiation43, 105–114.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, K. K., Gonzalez, G. A., Menzel, P., Rivier, J., and Montminy, M. R. (1990) Characterization of a bipartite activator domain in transcription factor CREB. Cell 60, 611–617.

    Article  PubMed  CAS  Google Scholar 

  • Yang, T. P., Singer-Sam, J., Flores, J. C., and Riggs, A. D. (1988) DNA binding factors for the CpG-rich island containing the promoter of the human X-linked PGK gene. Somat. Cell Molec. Gen. 14, 461–472.

    Article  CAS  Google Scholar 

  • Yisraeli, J., Aldelstein, R. S., Melloul, D., Nudel, U., Yaffe, D., and Cedar, H. (1986) Muscle-specific activation of a methylated chimeric actin gene. Cell 46, 409–416.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, D., Ehrlich, K. C., Supakar, P. C., and Ehrlich, M. (1989a) A plant DNA-binding protein that recognizes 5-methylcytosine residues. Mol. Cell Biol. 9, 1351–1356.

    PubMed  CAS  Google Scholar 

  • Zhang, X.-Y., Asiedu, C. K., Supakar, P. C., Khan, R., Ehrlich, K. C., and Ehrlich, M. (1990a) Binding sites in mammalian genes and viral gene regulatory regions recognized by methylated DNA-binding protein. Nucl. Acids Res. 18, 6253–6260.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X.-Y., Inamdar, N. M., Supakar, P. C., Wu, K., Ehrlich, K. C., and Ehrlich, M. (1991) Three MDBP sites in the immediate-early enhancer-promoter region of human cytomegalovirus. Virology 182, 865–869.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X.-Y., Lofln, P. T., Gehrke, C. W., Andrews, P. A., and Ehrlich, M. (1987) Hypermethylation of human DNA sequences in embryonal carcinoma cells and somatic tissues but not in sperm. Nucl. Acids Res. 15, 9429–9449.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X.-Y, Supakar, P. C., Khan, R., Ehrlich, K. C, and Ehrlich, M. (1989b) Related sites in human and herpes DNA recognized by methylated DNA-binding protein from human placenta. Nucl. Acids Res.17, 1459–1474.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X.-Y., Supakar, P. C., Wu, K., Ehrlich, K. C., and Ehrlich, M. (1990b) An MDBP site in the first intron of the human c-myc gene. Cancer Res. 50, 6865–6869.

    PubMed  CAS  Google Scholar 

  • Zhang, X.-Y., Wang, R. Y.-H., and Ehrlich, M. (1985) Human DNA sequences exhibiting gamete-specific hypomethylation. Nucl. Acids Res. 13, 4837–4851.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Ehrlich, M., Ehrlich, K.C. (1993). Effect of DNA methylation on the binding of vertebrate and plant proteins to DNA. In: Jost, JP., Saluz, HP. (eds) DNA Methylation. EXS, vol 64. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9118-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9118-9_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9915-4

  • Online ISBN: 978-3-0348-9118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics