Skip to main content

Methylation of DNA in Prokaryotes

  • Chapter
DNA Methylation

Part of the book series: EXS ((EXS,volume 64))

Abstract

A much wider variety of biological functions of postreplicative DNA methylation is observed in prokaryotes than in eukaryotes. In eukaryotes DNA methylation is primarily a means of the control of gene expression. Many chapters of this book are devoted to various aspects of this function. In prokaryotes, DNA methylation affects such diverse phenomena as determination of accessibility of DNA to digestion by endonucleases, control of initiation of DNA replication, and the definition of origins of packaging in the maturation of phage DNA, which will be dealt with in this article. We shall also be concerned with the enzymes, which facilitate methylation, the DNA methyltransferases. In the eukaryotes, as far as we know at this time, the various DNA methyltranferases encountered represent a rather homogeneous group, whereas in prokaryotes, we find a very diverse set of DNA methyltransferases. Beyond their biological significance, DNA methyltransferases represent a remarkable class of enzymes in their own right. Not only are they paradigms for sequence specific DNA binding proteins, but they also show specificity in their catalytic interaction with defined DNA sequences. Furthermore, their universal distribution, the multitude of enzymes with different or identical specificities observed among prokaryotes and the obligatory coexistence of isospecific restriction and methylating enzymes in restriction/modification systems make DNA methyltransferases choice candidates for evolutionary studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

adenine

bp:

base pair(s)

C:

cytosine

ENase:

restriction endonuclease

G:

guanine

5-mC:

5-methylcytosine

MTase:

DNA methyltransferase

N:

non defined base or nucleotide

N6-mA:

N6-methyladenine

N4-mC:

N4-methylcytosine

R:

purine

SAM:

S-adenosyl-methionine

SAH:

S-adenosyl-homocysteine

T:

thymine

TRD:

Target recognizing domain

U:

uracil

wt:

wild type

Y:

pyrimidine

References

  • Abeles, A. (1986) PI plasmid replication: purification and DNA-binding activity of the replication protein RepA J. Biol. Chem. 261, 3548–3555.

    PubMed  CAS  Google Scholar 

  • Abeles, A. L., and Austin, S. J. (1987) PI plasmid replication requires methylated DNA. EMBO J. 6, 3185–3189.

    PubMed  CAS  Google Scholar 

  • Abeles, A., Snyder, K., and Chattoraj, D (1984) PI plasmid replication: replication structure. J. Mol. Biol. 173, 307–324.

    PubMed  CAS  Google Scholar 

  • Abraham, J. M., Freitag, C. S., Clements, J. R., and Eisenstein, B. I. (1985) An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl. Acad. Sei. USA 82, 5724–5727.

    CAS  Google Scholar 

  • Arber, W., and Linn, S. (1969) DNA modification and restriction. Ann. Rev Biochem, 38, 467–500.

    PubMed  CAS  Google Scholar 

  • Bächi, B., and Arber, W. (1977) Physical mapping of BgIII, BamHl, EcoKl, Hindlll and Pst I restriction fragments of bacteriophage PI DNA. Mol. Gen. Genet. 153, 311–324.

    PubMed  Google Scholar 

  • Bächi, B., Reiser, J., and Pirrotta, V. (1979) Methylation and cleavage of sequences of the Eco?\ restriction-modification enzyme. J. Mol. Biol. 128, 143–163.

    PubMed  Google Scholar 

  • Bachmann, B. J. (1987) Linkage map of Escherichia coli K-12, in: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, pp. 807–876. Eds F. C. Neidhardt, L. Ingraham, K. Brooks Low, B. Magasanik, M. Schaechter and H. E. Umbarger. American Society for Microbiology, Washington, D. C.

    Google Scholar 

  • Baga, M., Goransson, M., Normark, S., and Uhlin, B. E. (1985) Transcriptional activiation of a pap pilus virulence operon from uropathogenic Escherichia coli. EMBO J. 4, 3887–3893.

    PubMed  CAS  Google Scholar 

  • Bakker, A., and Smith D. W. (1989) Methylation of GATC sites is required for precise timing between rounds of DNA replication in Escherichia coli. J. Bacteriol. 171, 5738–5742.

    PubMed  CAS  Google Scholar 

  • Bale, A., d’Alarcao, M., and Marinus, M. G. (1979) Characterization of DNA adenine methylation mutants of Escherichia coli Kl2. Mutation Res. 59, 157–165.

    PubMed  CAS  Google Scholar 

  • Balganesh, T. S., Reiners, L. Lauster, R., Noyer-Weidner, M., Wilke, K. and Trautner, T. A. (1987) Construction and use of chimeric SPR/Ø3T DNA methyltransferases in the definition of sequence recognizing enzyme regions. EM bo J. 6, 3543–3549.

    CAS  Google Scholar 

  • Barany, F., Danzits, M., Zebala, J., and Mayer, A. (1992) Cloning and sequencing of genes encoding the TthHB81 DNA restriction and modification enzymes: comparison with the isoschizomeric Taql enzymes. Gene 112, 3–12.

    PubMed  CAS  Google Scholar 

  • Barbeyron, T., Kean, K., and Forterre, P. (1984) DNA adenine methylation of GATC sequences appeared recently in the Escherichia coli lineage. J. Bacteriol. 160, 586–590.

    PubMed  CAS  Google Scholar 

  • Barras, F., and Marinus, M. G. (1989) The great GATC.DNA methylation in E. coli. Trends Genet. 5, 139–143.

    PubMed  CAS  Google Scholar 

  • Bauer, J., Krämmer, G., and Knippers, R. (1981) Asymmetric repair of bacteriophage T7 heteroduplex DNA. Mol. Gen. Genet. 181, 541–547.

    PubMed  CAS  Google Scholar 

  • Bazaral, M., and Helinski, D. R. (T970) Replication of a bacterial plasmid and an episome in Escherichia coli. Biochemistry 9, 399–406.

    Google Scholar 

  • Behrens, B., Noyer-Weidner, M., Pawlek, B. Lauster R., Balganesh, T. S., and Trautner, T. A. (1987) Organization of multispecific DNA methyltransferases encoded by temperate Bacillus subtilis phages. EMBO J. 6, 1137–1142.

    PubMed  CAS  Google Scholar 

  • Berg, D. E. (1989) Transposon Tn5, in: Mobile DNA, pp. 186–210. Eds D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D. C.

    Google Scholar 

  • Bergerat, A., and Guschlbauer, W. (1990) The double role of methyl donor and allosteric effector of S-adenosyl-methionine for Dam methylase of E. coli. Nucl. Acids Res. 18, 4369–4375.

    PubMed  CAS  Google Scholar 

  • Bergerat, A., Guschlbauer, W., and Fazakerley, V. (1991) Allosteric and catalytic binding of S-adenosylmethionine to Escherichia coli DNA adenine methyltransferase monitored by 3H NMR. Proc. Natl. Acad. Sei USA 88, 6394–6397.

    CAS  Google Scholar 

  • Bertani, G., and Weigle, J. J. (1953) Host controlled variations in bacterial viruses. J. Bacteriol. 65, 113–121.

    PubMed  CAS  Google Scholar 

  • Bestor, T. H., and Ingram, V. M. (1983) Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc. Natl. Acad. Sci. USA 80, 5559–5563.

    PubMed  CAS  Google Scholar 

  • Bestor, T., Laudano, A., Mattaliano, R., and Ingram, V. (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells: the carboxy-terminal domain of the mammalian enzyme is related to bacterial restriction methyltransferases. J. Mol. Biol. 203, 971–983.

    PubMed  CAS  Google Scholar 

  • Bickle, T. A. (1987) DNA restriction and modification systems. In: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, pp. 692–696. Eds F. C. Neid- hardt, L. Ingraham, K. Brooks Low, B. Magasanik, M. Schaechter and H. E. Umbarger. American Society for Microbiology, Washington, D. C.

    Google Scholar 

  • Bickle, T. A., Brack, C., and Yuan, R. (1978) ATP-induced conformational changes in the restriction endonuclease from Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 75, 3099–3103.

    PubMed  CAS  Google Scholar 

  • Blumenthal, R. M., Gregory, S. A., and Cooperider, J. S. (1985) Cloning of a restriction-mod-ification system from Proteus vulgaris and its use in analyzing a methylase-sensitive phenotype in Escherichia coli. J. Bacteriol. 164, 501–509.

    PubMed  CAS  Google Scholar 

  • Blyn, L. B., Braaten, B. A., and Low, D. A. (1990) Regulation of pap pilin phase variation by a mechanism involving differential Dam methylation states. EMBO J. 9, 4045–4054.

    PubMed  CAS  Google Scholar 

  • Blyn, L. B., Braaten, B. A., White-Ziegler, C. A., Rolfson, D. A., and Low, D. A. (1989) Phase-variation of pyelonephritis-associated pili in Escherichia coli: evidence for transcriptional regulation. EMBO J. 8, 613–620.

    PubMed  CAS  Google Scholar 

  • Bocklage, H., Heeger, K., and Müller-Hill, B. (1991) Cloning and characterization of the MboII restriction-modification system. Nucl. Acids Res. 19, 1007–1013.

    PubMed  CAS  Google Scholar 

  • Bölker, M., and Kahmann, R. (1989) The Escherichia coli regulatory protein OxyR discriminates between methylated and unmethylated states of the phage Mu mompromoter. EMBO J. 8, 2403–2410.

    PubMed  Google Scholar 

  • Bölker, M., Wulczyn, F. G., and Kahmann, R. (1989) Role of bacteriophage Mu C protein in activiation of the mom gene promoter. J. Bacteriol. 171, 2019–2027.

    PubMed  Google Scholar 

  • Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heynecker, H. L., Boyer, H. W., Crosa, J. H., and Falkow, S. (1977) Construction and characterization of new multipurpose cloning vehicles. II. A multipurpose cloning system. Gene 2, 95–113.

    PubMed  CAS  Google Scholar 

  • Borck, K. Beggs, J. D., Brammar, W. J., Hopkins, A. S., and Murray, N. E. (1976) The construction in vitro of transducing derivatives of phage lambda. Mol. Gen. Genet. 146, 199–207.

    PubMed  CAS  Google Scholar 

  • Bougueleret, L., Schweizstein, M., Tsugita, A., and Zabeau, M. (1984) Characterization of the genes coding for the IscoRV restriction and modification system of Escherichia coli. Nucl. Acids Res. 12, 3659–3676.

    PubMed  CAS  Google Scholar 

  • Boye, E., L0bner-Olesen, A., and Skarstad, K. (1988) Timing of chromosomal replication in Escherichia coli. Biochim. Biophys. Acta 951, 359–364.

    PubMed  CAS  Google Scholar 

  • Boye, E., and Løbner-Olesen, A. (1990) The role of dam methyltransferase in the control of DNA replication in E. coli. Cell 62, 981–989.

    PubMed  CAS  Google Scholar 

  • Boye, E., Marinus, M. G., and Løbner-Olesen, A. (1992) Quantitation of dam methyltransferase in Escherichia coli. J. Bacteriol. 174, 1682–1685.

    PubMed  CAS  Google Scholar 

  • Boyer, H. W., and Roulland-Dussoix, D. (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41, 459–472.

    PubMed  CAS  Google Scholar 

  • Braaten, B. A., Blyn, L. B., Skinner, B. S., and Low, D. A. (1991) Evidence for a methylation-blocking factor (mbf) locus involved in pap pilus expression and phase variation in Escherichia coli. J. Bacteriol. 173, 1789–1800.

    PubMed  CAS  Google Scholar 

  • Bramhill, D., and Kornberg, A. (1988) A model for initiation at origins of DNA replication. Cell 54, 915–918.

    PubMed  CAS  Google Scholar 

  • Brendler, T., Abeles, A., and Austin, S. (1991) Critical sequences in the core of the PI plasmid replication origin. J. Bacteriol. 173, 3935–3942.

    PubMed  CAS  Google Scholar 

  • Brody, H., and Hill, C. W. (1985) Attachment site of the genetic element e 14. J. Bacteriol. 170, 2040–2044.

    Google Scholar 

  • Brooks, J. E., Blumenthal, R. M., and Gingeras, T. R. (1983) The isolation and characteriza¬tion of the Escherichia coli DNA adenin methylase (dam) gene. Nucl. Acids Res. 11, 837–851.

    PubMed  CAS  Google Scholar 

  • Brooks, J. E., Benner, J. S., Heiter, D. F., Silber, K. S., Sznyter, L. A., Jager-Quinton T., Moran, L. S., Slatko, B. E., Wilson, G. G., and Nwankwo, D. O. (1989) Cloning the BamHl restriction modification system. Nucl. Acids Res. 17, 979–997.

    PubMed  CAS  Google Scholar 

  • Brooks, J. E., Nathan, P. D., Landry, D., Szynter, L. A., Waite-Rees, P., Ives, C. L., Moran, L. S., Slatko, B. E., and Benner, J. S. (1991) Characterization of the cloned BamHl restriction modification system: its nucleotide sequence, properties of the methylase, and expression in heterologous hosts. Nucl. Acids Res. 19; 841–850.

    PubMed  CAS  Google Scholar 

  • Buhk, H.-J., Behrens, B., Tailor, R., Wilke, K., Prada, J. J., Günthert, U., Noyer-Weidner, M., Jentsch, S., and Trautner, T. A. (1984) Restriction and modification in Bacillus subtilis: nucleotide sequence, functional organization and product of the DNA methyltransferase gene of bacteriophage SPR. Gene 29, 51–61.

    PubMed  CAS  Google Scholar 

  • Bullas, L. R., and Colson, C. (1975) DNA restriction and modification systems in Salmonella. III. SP, a Salmonellapotsdam system allelic to the SB system in Salmonella typhimurium. Mol. Gen. Genet. 139, 177–188.

    PubMed  CAS  Google Scholar 

  • Burckhardt, J., Weisemann, J., Hamilton, D. L., and Yuan, R. (1981) Complexes formed between the restriction endonuclease EcoK and heteroduplex DNA. J. Mol. Biol. 153, 425–440.

    PubMed  CAS  Google Scholar 

  • de la Campa, A. G., Kale, P., Springhorn, S. S. and Lacks, S. A. (1987) Proteins encoded by the Dpnll restriction gene cassette. Two methylases and an endonuclease. J. Mol. Biol. 196, 457–469.

    PubMed  Google Scholar 

  • Campbell, J. L., and Kleckner, N. (1990) E. coli oriC and the dnak gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell 62, 967–979.

    PubMed  CAS  Google Scholar 

  • Card, C. O., Wilson, G. G., Weule, K., Hasapes, J., Kiss, A., and Roberts, R. J. (1990) Cloning and characterization of the Hpall methylase gene. Nucl. Acids Res. 18, 1377–1383.

    PubMed  CAS  Google Scholar 

  • Cerritelli, S., Springhorn, S. S., and Lacks, S. A. (1989) Dpnh, a methylase for single-stranded DNA in the Dpnll restriction system and its biological function. Proc. Natl. Acad. Sci. USA 86, 9223 - 9227.

    PubMed  CAS  Google Scholar 

  • Chandrasegaran, S., and Smith, H. O. (1988) Amino acid sequence homologies among twenty-five restriction endonucleases and methylases, in: Structure and Expression, vol. 1, pp. 149–156. Eds R. H. Sarma and M. H. Sarma. Adenine, Guilderland, N.Y.

    Google Scholar 

  • Chandrasegaran, S., Lunnen, K. D., Smith, H. O., and Wilson, G. G. (1988) Cloning and sequencing of the Hin fT restriction and modification genes. Gene 70, 387–392.

    PubMed  CAS  Google Scholar 

  • Chen, L., MacMillan, A. M., Chang, W., Ezaz-Nikpay, K., Lane, W. S., and Verdine, G. L. (1991) Direct identification of the active-site nucleophile in a DNA (Cytosine-5)-methyl-transferase. Biochemistry 30, 11018–11025.

    PubMed  CAS  Google Scholar 

  • Christman, M. F., Storz, G., and Ames, B. N. (1989) OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc. Natl. Acad. Sci. USA 86, 3484–3488.

    PubMed  CAS  Google Scholar 

  • Claverys, J.-P., and Lacks, S. A. (1986) Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria. Micobiol. Reviews 50, 133–165.

    CAS  Google Scholar 

  • Collins, M., and Myers, R. (1987) Alterations in DNA helix stability due to base modifications can be evaluated using denaturing gradient electrophoresis. J. Mol. Biol. 198, 737–744.

    PubMed  CAS  Google Scholar 

  • Connaughton, J. F., Kaloss, W. D., Vanek, P. G., Nardone, G. A., and Chirikjian, J. G. (1990) The complete sequence of the Bacillus amyloliquefacians proviral H2, Bam HI methylase gene. Nucl. Acids Res. 18, 4002.

    PubMed  CAS  Google Scholar 

  • Coulby, J. N., and Sternberg, N. L. (1988) Characterization of the phage PI dam gene. Gene 74, 191.

    PubMed  CAS  Google Scholar 

  • Coulondre, C., Miller, J. H., Farabaugh, P. J., and Gilbert, W. (1978) Molecular basis of substitution hotspots in Escherichia coli. Nature 274, 775–780.

    PubMed  CAS  Google Scholar 

  • Cowan, G. M., Gann, A. A. F., and Murray, N. E. (1989) Conservation of complex DNA recognition domains between families of restriction enzymes. Cell 56, 103–109.

    PubMed  CAS  Google Scholar 

  • Deschavanne, P., and Radman, M. (1991) Counterselection of GATC sequences in enterobac- teriophages by the components of the methyl-directed mismatch repair system. J. Mol. Evol. 33, 125–132.

    PubMed  CAS  Google Scholar 

  • Dharmalingam, K., and Goldberg, E. B. (1976) Phage coded protein prevents restriction of unmodified progeny T4 DNA. Nature 260, 454–456.

    PubMed  CAS  Google Scholar 

  • Dharmalingam, K., Revel, H. R., and Goldberg, E. B. (1982) Physical mapping and cloning of the bacteriophage T4 anti-restriction endonuclease gene. J. Bacteriol. 149, 694–699.

    PubMed  CAS  Google Scholar 

  • Dila, D., Sutherland, E., Moran, L., Slatko, B., and Raleigh, E. A. (1990) Genetic and sequence organization of the mcrBC locus of Escherichia coli K-12. J. Bacteriol. 172, 4888–4900.

    PubMed  CAS  Google Scholar 

  • Dodson, K. W., and Berg, D. E. (1989) Factors affecting transposition activity of IS50and Tn5 ends. Gene 76, 207–213.

    PubMed  CAS  Google Scholar 

  • Düsterhöft, A., Erdmann, D., and Kröger, M. (1991) Stepwise cloning and molecular characterization of the HgiDl restriction-modification system from Herpetosiphon giganteus Hpa2. Nucl. Acids Res. 10; 1049–1056.

    Google Scholar 

  • Dzidiz, S., and Radman, M. (1989) Genetic requirements for hyper-recombination by very short patch mismatch repair: involvement of Escherichia coli DNA polymerase I. Mol. Gen. Genet. 217, 254–256.

    Google Scholar 

  • Ehrlich, M., Norris, K. F., Wang, R. Y.-H., Kuo, K. C., and Gehrke, C. W. (1986) DNA cytosine methylation and heat-induced deamination. Biosci. Rep. 6, 387–393.

    PubMed  CAS  Google Scholar 

  • Engel, J. D., and von Hippel, P. H. (1978) Effects of methylation on the stability of nucleic acid conformations: studies at the polymer level. J. Biol. Chem. 253, 927–934.

    PubMed  CAS  Google Scholar 

  • Freitag, C. S., Abraham, J. M., Clements, J. R., and Eisenstein, B. I. (1985) Genetic analysis of the phase variation control of expression of type 1 fimbriae in Escherichia coli. J. Bacteriol. 162, 668–675.

    PubMed  CAS  Google Scholar 

  • Friedman, S. (1985) The irreversible binding of azacytosine-containing DNA fragments to bacterial DNA (cytosine-5)methyltransferases. J. Biol. Chem. 260, 5698–5705.

    PubMed  CAS  Google Scholar 

  • Friedman, S. (1986) Binding of the Eco RII methylase to azacytosine-containing DNA. Nucl. Acids. Res. 14, 4543–4556.

    PubMed  CAS  Google Scholar 

  • Fuller-Pace, F. V., Bullas, L. R., Delius, H., and Murray, N. E. (1984) Genetic recombination can generate altered restriction specificity. Proc. Natl. Acad. Sei. USA 81, 6095–6099.

    CAS  Google Scholar 

  • Fuller-Pace, F. V., and Murray, N. E. (1986) Two DNA recognition domains of the specificity polypeptides of a family of type I restriction enzymes. Proc. Natl. Acad. Sei. USA 83, 9368–9372.

    CAS  Google Scholar 

  • Gann, A. A. F., Campbell, A. J. B., Collins, J. F., Coulsond, A. F. W., and Murray, N. E. (1987) Reassortment of DNA recognition domains and the evolution of new specificities. Mol. Micobiol. 1, 13–22.

    CAS  Google Scholar 

  • Gammie, A. E., and Crosa, J. H. (1991) Roles of DNA adenine methylation in controlling replication of the REPI replicon of plasmid pColV-K30. Mol. Microbiol. 5, 495–503.

    PubMed  CAS  Google Scholar 

  • Geier, G. E., and Modrich, P. (1979) Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of the Dpnl endonuclease. J. Biol. Chem. 254, 1408–1413.

    PubMed  CAS  Google Scholar 

  • Glickman, B. W. (1979) Spontaneous mutagenesis in Escherichia coli strains lacking 6-methyl- adenine residues in their DNA. An altered mutational spectrum in dam mutants. Mutat. Res. 61, 153–162.

    PubMed  CAS  Google Scholar 

  • Glickman, B. W., and Radman, M. (1980) Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc. Natl. Acad. Sei. USA 77, 1063–1067.

    CAS  Google Scholar 

  • Glickman, B., Van den Elsen, P., and Radman, M. (1978) Induced mutagenesis in dam~ mutants of Escherichia coli: a role for 6-methyladenine residues in mutation avoidance. Mol. Gen. Genet. 163, 307–312.

    PubMed  CAS  Google Scholar 

  • Glover, S. W., and Colson, C. (1969) Genetics of host-controlled restriction and modification in Escherichia coli. Genet. Res. 13, 227–240.

    PubMed  CAS  Google Scholar 

  • Gough, J. A., and Murray, N. E. (1983) Sequence diversity among related genes for recognition of specific targets in DNA molecules. J. Mol. Biol. 166, 1–19.

    PubMed  CAS  Google Scholar 

  • Graham, M. W., Doherty, J. P., and Woodcock, D. M. (1990) Efficient construction of plant genomic libraries requires the use of mcr~ host strains and packaging mixes. Plant Mol. Biol. Rep. 8, 33–42.

    Google Scholar 

  • Grant, S. G. N., Jessee, J., Bloom, F. R., and Hanahan, D. (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc. Nat. Acad. Sei. USA 87, 4645–4649.

    CAS  Google Scholar 

  • Greene, P. J., Gupta, M., Boyer, H. W., Brown, W. E., and Rosenberg, J. M. (1981) Sequence analysis of the DNA encoding the Eco RI endonuclease and methylase. J. Biol. Chem. 256, 2143–2153.

    PubMed  CAS  Google Scholar 

  • Greener, A., and Hill, C. W. (1980) Identification of a novel genetic element in Escherichia coli K-12. J. Bacteriol. 144, 312–321.

    PubMed  CAS  Google Scholar 

  • Gruenbaum, Y., Cedar, H., Razin, A. (1982) Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 295, 620–622.

    PubMed  CAS  Google Scholar 

  • Gubler, M., and Bickle, T. A. (1991) Increased protein flexibility leads to promiscuous protein-DNA interactions in type IC restriction-modification systems. EMBO J. 10, 951–957.

    PubMed  CAS  Google Scholar 

  • Hadi, S. M., Bachi, B., Iida, S., and Bickle, T. A. (1983) DNA restriction-modification enzymes of phage PI and plasmid pl5B. Subunit functions and structural homologies. J. Mol. Biol. 165, 19–34.

    PubMed  CAS  Google Scholar 

  • Hadi, S. M., Bachi, B., Shepherd, J. C. W., Yuan, R., Ineichen, K., and Bickle, T. A. (1979) DNA recognition and cleavage by the Eco PI 5 restriction endonuclease. J. Mol. Biol. 134, 655–666.

    PubMed  CAS  Google Scholar 

  • Hailing, S. M., Simons, R. W., Way, J. C., Walsh, R. B., and Kleckner, N. (1982) DNA sequence organization of Tn/0’s IS 10-Right and comparison with IS/0-Left. Proc. Natl. Acad. Sci. USA 79, 2608–2612.

    Google Scholar 

  • Hanck, T., Gerwin, N., and Fritz, H. (1989) Nucleotide sequence of the dcm locus of Escherichia coli Kl2. Nucl. Acids Res. 17, 5844.

    PubMed  CAS  Google Scholar 

  • Hardy, L. W., Finer-Moore, J. S., Montfort, W. R., Jones, M. O., Santi, D. V., and Stroud, R. M. (1987) Atomic structure of thymidylate synthase: target for rational drug design. Science, 235, 448–455.

    PubMed  CAS  Google Scholar 

  • Harrison, S. C. (1991) A structural taxonomy of DNA-binding domains. Nature 353, 715–719.

    PubMed  CAS  Google Scholar 

  • Hattman, S. (1978) Sequence specificity of the wild-type (dam +) and mutant (damh) forms of bacteriophage T2 DNA adenine methylase. J. Mol. Biol. 119, 361–376.

    PubMed  CAS  Google Scholar 

  • Hattman, S. (1982) DNA methyltransferase-dependent transcription of the phage Mu mom gene.Proc. Natl. Acad. Sci. USA 79, 5518–5521,

    PubMed  CAS  Google Scholar 

  • Hattman, S., and Ives, J. (1984) SI nuclease mapping of the phage Mu mom gene promoter: a model for the regulation of mom expression. Gene 29, 185–198.

    PubMed  CAS  Google Scholar 

  • Hattman, S., Brooks, J. E., and Masurekar, M. (1978) Sequence specificity of the Pl-modification methylase (M.EcoPl) and the DNA methylase (M.Ecodam) controlled by the E. coli dam gene. J. Mol. Biol. 126, 367–380,

    PubMed  CAS  Google Scholar 

  • Hattman, S., Ives, J., Margolin, W., and Howe, M. M. (1985) Regulation and expression of the bacteriophage Mu mom gene; mapping of the transactivation (Dad) function to the C region. Gene 39, 71–76.

    PubMed  CAS  Google Scholar 

  • Heisig, P., and Kahmann, R. (1986) The sequence and worn-transactivation function of the C gene of bacteriophage Mu. Gene 43, 59–67.

    PubMed  CAS  Google Scholar 

  • Heitman, J., and Model, P. (1987) Site-specific methylases induce the SOS DNA repair response in Escherichia coli. J. Bacteriol. 169, 3243–3250.

    PubMed  CAS  Google Scholar 

  • Helmstetter, C. E., and Leonard, A. C. (1987) Coordinate initiation of chromosome and minichromosome replication in Escherichia coli. J. Bacteriol. 169, 3489–3494.

    PubMed  CAS  Google Scholar 

  • Hennecke, F., Kolmar, H., Brùndl, K., and Fritz, H.-J. (1991) The vsr gene product of E. coli K-12 is a strand- and sequence-specific DNA mismatch endonuclease. Nature 353, 776–778.

    CAS  Google Scholar 

  • Herman, G. E., and Modrich, P. (1981) Escherichia coli K-12 clones that overproduce dam methylase are hypermutable. J. Bacteriol. 145, 644–646.

    PubMed  CAS  Google Scholar 

  • Herman, G. E., and Modrich, P. (1982) Escherichia coli dam methylase. Physical and catalytic properties of the homogeneous enzyme. J. Biol. Chem. 257, 2605–2612.

    PubMed  CAS  Google Scholar 

  • Hickson, I. D., Arthur, H. M., Bramhill, D„ and Emmerson, P. T. (1983) The E. coli uvrD gene product is DNA helicase II. Mol. Gen. Genet. 190, 265–270.

    CAS  Google Scholar 

  • Hill, C., Miller, L. A., and Klaenhammer, T. R. (1991). In vivo genetic exchange of a functional domain from a type lis methylase between lactococcal plasmid PTR 2030 and a virulent bacteriophage. J. Bacteriol. 173, 4363–4370.

    PubMed  CAS  Google Scholar 

  • Hiom, K., and Sedgwick, S. G. (1991) Cloning and structural characterization of the mcrA locus of Escherichia coli. J. Bacteriol. 173, 7368–7373.

    PubMed  CAS  Google Scholar 

  • Holmes, Jr., J., Clark, S., and Modrich, P. (1990) Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc. Natl. Acad. Sci. USA 87, 5837–5841.

    PubMed  CAS  Google Scholar 

  • Hümbelin, M., Suri, B., Rao, D. N., Hornby, D. P., Eberle, H., Pripfl, T., Kenel, S., and Bickle, T. A. (1988) Type II DNA restriction and modification systems Eco PI and Eco P15: Nucleotide sequence of the Eco PI operon, the £o?P15 mod gene and some Eco PI mod mutants. J. Mol. Biol. 200, 23–29.

    PubMed  Google Scholar 

  • Hughes, P., Squali-Houssaini, F.-Z., Forterre, P., and Kohiyama, M. (1984) In Vitro replication of a dam methylated and non-methylated ori-C plasmid. J. Mol. Biol. 176, 155–159.

    PubMed  CAS  Google Scholar 

  • Ingrosso, D., Fowler, A. V., Bleibaum, J., and Clarke, S. (1989) Sequence of the D-Aspartyl/L- Isoaspartyl protein methyltransferase from human erythrocytes. J. Biol. Chem. 264, 20131– 20139.

    Google Scholar 

  • Jacob, F., Brenner, S., and Cuzin, F. (1963) On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28, 329–348.

    CAS  Google Scholar 

  • Jones, M., and Wagner, R. (1981) N-methyl-N’-nitro-N-nitrosoguanidine sensitivity of E. coli mutants deficient in DNA methylation and mismatch repair. Mol. Gen. Genet. 184, 562–563.

    PubMed  CAS  Google Scholar 

  • Jones, M., Wagner, R., and Radman, M. (1987) Mismatch repair of deaminated 5-methyl-cy- tosine. J. Mol. Biol. 194, 155–159.

    PubMed  CAS  Google Scholar 

  • Kahmann, R. (1983) Methylation regulates the expression of a DNA-modification function encoded by bacteriophage Mu. Cold Spring Harbor Symp. Quant. Biol. 47, 639–646.

    PubMed  Google Scholar 

  • Kahmann, R. (1984) The mom gene of bacteriophage Mu. Curr. top. Microbiol. Immunol. 108, 29–47.

    PubMed  CAS  Google Scholar 

  • Kahmann, R., Seiler, K., Wulczyn, F. G., and Pfaff, E. (1985) The mom gene of bacteriophage Mu: a unique regulatory scheme to control a lethal function. Gene 39, 61–70.

    PubMed  CAS  Google Scholar 

  • Kannan, P., Cowan, G. M., Daniel A. S., Gann, A. A. F., and Murray, N. E. (1989) Conservation of organization in the specificity polypeptides of two families of type I restriction enzymes. J. Mol. Biol. 209, 335–344.

    PubMed  CAS  Google Scholar 

  • Kapfer, W., Walter, J., and Trautner, T. A. (1991) Cloning, characterization and evolution of the BsuFl resriction endonuclease gene of Bacillus subtilis and purification of the enzyme. Nucl. Acids Res. 19, 6457–6463.

    PubMed  CAS  Google Scholar 

  • Karreman, C., and de Waard, A. (1990) Agmenellum quadruplicatum MAqul, a novel modification methylase. J. Bacteriol 172, 266–272.

    CAS  Google Scholar 

  • Kaszubska, W., Aiken, C., O’Connor, C. D., and Gumport, R. I. (1989) Purification, cloning and sequence analysis of RsrI DNA methyltransferase: lack of homology between two enzymes, Rsr I and Eco RI, that methylate the same nucleotide in identical recognition sequences. Nucl. Acids Res. 17, 10403–10425.

    PubMed  CAS  Google Scholar 

  • Kaue, L., and Piekarowicz, A. (1978) Purification and properties of a new restriction endonuclease from Haemophilus influenzae Rf. Eur. J. Biochem. 92, 417–426.

    Google Scholar 

  • Kelleher, J. E., and Raleigh, E. A. (1991) A novel activity in Escherichia coli K-12 that directs restriction of DNA modified at CG dinucleotides. J. Bacteriol. 173, 5220–5223.

    PubMed  CAS  Google Scholar 

  • Kelleher, J. E., Daniel, A. S., and Murray, N. E. (1991) Mutations that confer de novo methyltransferase activity. J. Mol. Biol. 221, 431–440.

    PubMed  CAS  Google Scholar 

  • Kiss, A., and Baldauf, F. (1983) Molecular cloning and expression in Escherichia coli of two modification methylase genes of Bacillus subtilis. Gene 21, 111–119.

    PubMed  CAS  Google Scholar 

  • Kiss, A., Posfai, G., Keller, C. C., Venetianer, P., and Roberts, R. J. (1985) Nucleotide sequence of the BsuRl restriction-modification system. Nucl. Acids Res. 13, 6403–6421.

    PubMed  CAS  Google Scholar 

  • Kita, K., Kotani, H., Sugisaki, H., and Takanami, M. (1989) The Fokl restriction-modifica-tion system. I: Organization and nucleotide sequences of the restriction and modification genes. J. Biol. Chem. 264, 5751–5756.

    PubMed  CAS  Google Scholar 

  • Kleckner, N . (1989) Transposon Tn10, in: Mobile DNA, pp. 229–268. Eds D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D. C.

    Google Scholar 

  • Klimasauskas, S., Nelson, J. L., and Roberts, R. J. (1991) The sequence specificity domain of cytosine-C5 methylases. Nucl. Acids Res. 19, 6183–6190.

    PubMed  CAS  Google Scholar 

  • Klimasauskas, S., Timinskas, A., Menkevicius, S., Butkienè, D., Butkus, V., and Janulaitis, A. (1989) Sequence motifs characteristic of DNA [cytosine-N4] methyltransferases: similarity to adenine and cytosine-C5 DNA-methylases. Nucl. Acids Res. 17, 9823–9832.

    CAS  Google Scholar 

  • Klump, H. H. (1987) Ordnung in der Vielfalt. Organisation und Evolution eines Restriktions- Codes. Futura 4, 10–16.

    Google Scholar 

  • Koppes, L. J. H., and von Meyenburg, K. (1987) Nonrandom minichromosome replication in Escherichia coli K-12. J. Bacteriol. 169, 430–433.

    PubMed  CAS  Google Scholar 

  • Kramer, B., Kramer, W., and Fritz, H.-J. (1984) Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell 38, 879–887.

    CAS  Google Scholar 

  • Kretz, P. L., Kohler, S. W., and Short, J. M. (1991) Identification and characterization of a gene responsible for inhibiting propagation of methylated DNA sequences in merk merB1 Escherichia coli strains. J. Bacteriol. 173, 4707–4716.

    PubMed  CAS  Google Scholar 

  • Kretz, P. L., Reid, C. H., Greener, A., and Short, J. M. (1989) Effect of lambda packaging extract mcr restriction activity on DNA cloning. Nucl. Acids Res. 17, 5409.

    PubMed  CAS  Google Scholar 

  • Krüger, D. H., and Bickle, T. A. (1983) Bacteriophage survival: Multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol. Rev. 47, 345–360.

    PubMed  Google Scholar 

  • Krüger, T., Grund, C., Wild, C., and Noyer-Weidner, M. (1992) Characterization of the mcr BC region of Escherichia coli K-12 wild-type and mutant strains. Gene 114, 1–12.

    PubMed  Google Scholar 

  • Kumura, K., and Sekiguchi, M. (1983) Identification of the uvrD product of Escherichia coli as DNA helicase II and its induction by DNA-damaging agents. J. Biol. Chem. 259, 1560–1565.

    Google Scholar 

  • Kushner, S. R., Shepherd, J., Edwards, B., and Maples, V. F. (1978) uvrD, uvrE and recL represent a single gene in: DNA Repair Mechanisms, pp. 251–254. Eds P. C. Hanawalt, E. Friedberg and C. F. Fox. Academic Press, New York.

    Google Scholar 

  • Kushner, S. R., Maples, V. F., Easton, A., Farrance, I., and Peramachi, P. (1983) Physical biochemical, and genetic characterization of the uvrD gene product. ICN-UCLA Symp. Mol. Cell. Biol. 11, 153–159.

    CAS  Google Scholar 

  • Labbé, D., Höltke, H. J., and Lau, P. C. K. (1990) Cloning and characterization of two tandemly arranged DNA methyltransferase genes of Neisseria lactamica: An adenine-specific M.NlaIII and a cytosine-type methylase. Mol. Gen. Genet. 224, 101–110.

    PubMed  Google Scholar 

  • Lacks, S. A., (1980) Purification and properties of the complementary endonucleases Dpnl and Dpnll. Meth. Enzymol. 65, 138–146.

    PubMed  CAS  Google Scholar 

  • Lacks, S., and Greenberg, B. (1975) A deoxyribonuclease of Diplococcus pneumoniae specific for methylated DNA. J. Biol. Chem. 250, 4060–4066.

    PubMed  CAS  Google Scholar 

  • Lacks, S., and Greenberg, B. (1977) Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. J. Mol. Biol. 114, 153–168.

    PubMed  CAS  Google Scholar 

  • Lacks, S. A., Dunn, J. J., and Greenberg, B. (1982) Identification of base mismatches recognized by the heteroduplex-DNA-repair system of Streptococcus pneumoniae. Cell 31, 327–336.

    PubMed  CAS  Google Scholar 

  • Lacks, S. A., Mannarelli, B. M., Springhorn, S. S., and Greenberg, B. (1986) Genetic basis of the complementary Dpnl and Dpnll restriction systems of S. pneumoniae: An intercellular cassette mechanism. Cell. 46, 993–1000.

    PubMed  CAS  Google Scholar 

  • Laengle-Rouault, F., Maenhaut-Michel, G., and Radman, M. (1986) GATC sequence and mismatch repair in Escherichia coli. EMBO J. 5, 2009–2013.

    PubMed  CAS  Google Scholar 

  • Laengle-Rouault, F., Maenhaut-Michel, G., and Radman, M. (1987) GATC sequences, DNA nicks and the MutH function in Escherichia coli mismatch repair. EMBO J. 6, 1121–1127.

    Google Scholar 

  • Lahue, R. S., Su. S.-S., and Modrich, P. (1987) Requirement for d(GATC) sequences in Escherichia coli mutHLS mismatch correction. Proc. Natl. Acad. Sci. USA 84, 1482–1486.

    PubMed  CAS  Google Scholar 

  • Lahue, R. S., Au, K. G., and Modrich, P. (1989) DNA mismatch correction in a defined system. Science 245, 160–164.

    PubMed  CAS  Google Scholar 

  • Landoulsi, A., Hughes, P., Kern, R., and Kohiyama, M. (1989) dam methylation and the initiation of DNA replication on oriC plasmids. Mol. Gen. Genet. 216, 217–223.

    PubMed  CAS  Google Scholar 

  • Landoulsi, A., Malki, A., Kern, R., Kohiyama, M., and Hughes, P. (1990) The E. coli cell surface specifically prevents the initiation of DNA replication at oriC on hemimethylated DNA templates. Cell. 63, 1053–1060.

    CAS  Google Scholar 

  • Lange, C., Jugel, A., Walter, J., Noyer-Weidner, M., and Trautner, T. A. (1991a) ‘Pseudo’ domains in phage-encoded DNA methyltransferases. Nature 352, 645–648.

    PubMed  CAS  Google Scholar 

  • Lange, C., Noyer-Weidner, M., Trautner, T. A., Weiner, M., and Zahler, S. A. (1991b) M.H2I, a multispecific 5C-DNA methyltransferase encoded by Bacillus amyloliquefaciens phage H2. Gene 100, 213–218.

    PubMed  CAS  Google Scholar 

  • Lauster, R. (1989) Close relationship between the Hinfl and DpnA DNA-methyltransferase. Nucl. Acids Res. 17, 4402.

    PubMed  CAS  Google Scholar 

  • Lauster, R. (1989) Evolution of type II DNA methyltransferases. A gene duplication model. J. Mol. Biol. 206, 313–321.

    PubMed  CAS  Google Scholar 

  • Lauster, R., Kriebardis, A., and Guschlbauer, W. (1987) The GATATC-modification enzyme EcoRV is closely related to the GATC-recognizing methyltransferases Dpnll and dam from E. coli and phage T4. FEBS Lett. 220, 167–176.

    CAS  Google Scholar 

  • Lauster, R., Trautner, T. A., and Noyer-Weidner, M. (1989) Cytosine-specific type II DNA methyltransferases. A conserved enzyme core with variable target-recognizing domains. J. Mol. Biol. 206, 305–312.

    PubMed  CAS  Google Scholar 

  • Lieb, M. (1983) Specific mismatch correction in bacteriophage lambda crosses by very short patch repair. Mol. Gen. Genet. 191, 118–125.

    PubMed  CAS  Google Scholar 

  • Lieb, M. (1985) Recombination in the k repressor gene: evidence that very short patch (VSP) mismatch correction restores a specific sequence. Mol. Gen. Genet. 199, 465–470.

    PubMed  CAS  Google Scholar 

  • Lieb, M. (1987) Bacterial genes mutL, mutS, and dem participate in repair of mismatches at 5-methylcytosine sites. J. Bacteriol. 169, 5241–5246.

    PubMed  CAS  Google Scholar 

  • Lieb, M., Allen, E., and Read, D. (1986) Very short patch mismatch repair in phage lambda: repair sites and length of repair tracts. Genetics 114, 1041–1060.

    PubMed  CAS  Google Scholar 

  • Lin, P. M., Lee, C. H., and Roberts, R. J. (1989) Cloning and characterization of the genes encoding the MspI restriction modification system. Nucl. Acids Res. 17, 3001–3011.

    PubMed  CAS  Google Scholar 

  • Lindahl, T. (1974) An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc. Natl. Acad. Sci. USA 71, 3649–3653.

    PubMed  CAS  Google Scholar 

  • Lindahl, T., and Nyberg, B. (1974) Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 13, 3405–3410.

    PubMed  CAS  Google Scholar 

  • Linder, P., Doelz, R., Gubler, M., and Bickle, T. A. (1990) An anticodon nuclease gene inserted into a hsd region encoding a type I DNA restriction system. Nucl. Acids. Res. 18, 7170.

    PubMed  CAS  Google Scholar 

  • Ltfbner-Olesen, A., Boye, E., and Marinus, M. G. (1992) Multiple promoters control expression of the Escherichia coli dam gene. Mol. Microbiol. 6, 1841–1851.

    Google Scholar 

  • Loenen, W. A. M., Daniel, A. S., Braymer, H., D., and Murray, N. E. (1987) Organization and sequence of hsd genes of Escherichia coli K-12. J. Mol. Biol. 198, 159–170.

    CAS  Google Scholar 

  • Looney, M. C., Moran, L. S., Jack, W. E., Feehery, G. R., Benner, J. S., Slatko, B. E., and Wilson, G. G. (1989) Nucleotide sequence of the Fokl restriction-modification system: separate strand specificity domains in the methyltransferase. Gene 80, 193–208.

    PubMed  CAS  Google Scholar 

  • Low, D., Robinson, E. N., McGee, Z. A., and Falkow, S. (1987) The frequency of expression of pyelonephritis-associated pili is under regulatory control. Mol. Microbiol. 1, 335–346.

    PubMed  CAS  Google Scholar 

  • Lu, A.-L., Clark, S., and Modrich, P. (1983) Methyl-directed repair of DNA base-pair mismatches in vitro. Proc. Natl. Acad. Sci. USA 80, 4639–4643.

    PubMed  CAS  Google Scholar 

  • Lu, A. L., Welsh, K., Clark, S., Su, S. S., and Modrich, P. (1984) Repair of DNA base-pair mismatches in extracts of Escherichia coli. Cold Spring Harbor Symp. Quant. Biol. 49, 589–596.

    PubMed  CAS  Google Scholar 

  • Luria, S. E., and Human, M. G. (1952) A nonhereditary, host-induced variation of bacterial viruses. J. Bacteriol. 64, 557–569.

    PubMed  CAS  Google Scholar 

  • Macaluso, A., and Mettus, A. M. (1991) Efficient transformation of Bacillus thuringiensis require nonmethylated plasmid DNA. J. Bacteriol. 173, 1353–1356.

    PubMed  CAS  Google Scholar 

  • Macdonald, P. M., and Mosig, G. (1984) Regulation of a new bacteriophage T4 gene, 69, that spans an origin of DNA replication. EMBO J. 3, 2863–2871.

    PubMed  CAS  Google Scholar 

  • MacNeil, D. J. (1988) Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J. Bacteriol. 170, 5607–5612.

    PubMed  CAS  Google Scholar 

  • Makris, J. C., Nordmann, P. L., and Reznikoff, W. S. (1988) Mutational analysis of insertion sequence 50, (IS50) and transposon 5 (Tn5) ends. Proc. Natl. Acad. Sci. USA 85, 2224–2228.

    PubMed  CAS  Google Scholar 

  • Malki, A., Kern, R., Kohiyama, M., and Hughes, P. (1992) Inhibition of DNA synthesis at the hemimethylated pBR322 origin of replication by a cell membrane fraction. Nucl. Acids Res. 20, 105–109.

    PubMed  CAS  Google Scholar 

  • Manarelli, B. M., Balganesh, T. S., Greenberg, B., Springhorn, S., and Lacks, S. A. (1985) Nucleotide sequence of the Dpn II methylase gene of Stereptococcus pneumoniae and its relationship to the dam gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 82, 4468–4472.

    Google Scholar 

  • Marinus, M. G. (1973) Location of DNA methylation genes on the Escherichia coli K-12 genetic map. J. Bacteriol. 127, 47–55.

    CAS  Google Scholar 

  • Marinus, M. G. (1984) Methylation of prokaryotic DNA in: DNA Methylation, pp. 81 - 109. Eds A. Razin, H. Cedar and A. D. Riggs. Springer-Verlag, New York.

    Google Scholar 

  • Marinus, M. G. (1987) DNA methylation in Escherichia coli. Ann. Rev. Genet. 21, 113–131.

    PubMed  CAS  Google Scholar 

  • Marinus, M. G., and Konrad, E. B. (1976) Hyper-recombination in dam mutants of Escherichia coli K-12. Mol. Gen. Genet. 149, 213–277.

    Google Scholar 

  • Marinus, M. G., and Morris, N. R. (1973) Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J. Bacteriol. 114, 1143–1150.

    PubMed  CAS  Google Scholar 

  • Marinus, M. G., and Morris, N. R. (1974) Biological function for 6-methyladenine residues in the DNA of Escherichia coli K12. J. Mol. Biol. 85, 309–322.

    PubMed  CAS  Google Scholar 

  • Marinus, M. G., and Morris, N. R. (1975) Pleiotropic effects of a DNA adenine methylation mutation dam-3 in Escherichia coli K-12. Mutat. Res. 28, 15–26.

    PubMed  CAS  Google Scholar 

  • McClelland, M. (1985) Selection against dam methylation sites in the genomes of DNA of enterobacteriophages. J. Mol. Evol. 21, 317–322.

    CAS  Google Scholar 

  • McGraw, B. R., and Marinus, M. G. (1980) Isolation and characterization of dam+ revertants and suppressor mutations that modify secondary phenotypes of dam -3 strains of Escherichia coli K12. Mol. Gen. Genet. 178, 309–315.

    PubMed  CAS  Google Scholar 

  • Meijer, M., Beck, E., Hansen, F. G., Bergmans, H. E., Messer, W., von Meyenburg, K., and Schaller, H. (1979) Nucleotide sequence of the origin of replication of the E. coli K-12 chromosome. Proc. Natl. Acad. Sci. USA 76, 580–584.

    CAS  Google Scholar 

  • Meisel, A., Krüger, D. H., and Bickle, T. A. (1991) M.£coP15 methylates the second adenine in its target recognition sequence. Nucl. Acids. Res. 19, 3997.

    PubMed  CAS  Google Scholar 

  • Meisel, A., Bickle, T. A., Krüger, D. H., and Schröder, C. (1992) Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage. Nature 355, 467–469.

    PubMed  CAS  Google Scholar 

  • Messer, W., and Noyer-Weidner, M. (1988) Timing and targeting: The biological functions of Dam methylation in E. coli. Cell 54, 735–737.

    CAS  Google Scholar 

  • Messer, W., Bellekes, U., and Lother, H. (1985) Effect of dam methylation on the activity of the E. coli replication origin, oriC. EMBO J. 4, 1327–1332.

    CAS  Google Scholar 

  • von Meyenburg, K., and Hansen, F. G. (1987) Regulation of chromosome replication in: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1555–1577. Eds F. C. Neidhart, J. L. Ingraham, K. Brooks Low, B. Magasanik, M. Schaechter and H. E. Umbarger. American Society of Microbiology, Washington, D.C.

    Google Scholar 

  • Miner, Z., and Hattman, S. (1988) Molecular cloning, sequencing and mapping of the bacteriophage T2 dam gene. J. Bacteriol. 170, 5177–5184.

    PubMed  CAS  Google Scholar 

  • Modrich, P. (1987) DNA mismatch correction, Ann. Rev. Biochem. 56, 435–466.

    PubMed  CAS  Google Scholar 

  • Modrich, P. (1989) Methyl-directed DNA mismatch correction. J. Biol. Chem. 264, 6597–6600.

    PubMed  CAS  Google Scholar 

  • Muckerman, C. C., Springhorn, S. S., Greenberg, B., and Lacks, S. A. (1982) Transformation of restriction endonuclease phenotype in Streptococcus pneumoniae. J. Bacteriol. 152, 183–190.

    PubMed  CAS  Google Scholar 

  • Murchie, A. I. H., and Lilley, M. J. (1989) Base methylation and local DNA helix stability: effect on the kinetics of cruciform extrusion. J. Mol. Biol. 205, 593–602.

    PubMed  CAS  Google Scholar 

  • Murray, N. E., Gough, J. A., Suri, B., and Bickle, T. A. (1982) Structural homologies among type I restriction-modification systems. EMBO J. 1, 535–539.

    PubMed  CAS  Google Scholar 

  • Nagaraja, V., Shepherd, J. C. W., and Bickle, T. A. (1985) A hybrid recognition sequence in a recombinant restriction enzyme and the evolution of DNA sequence specificity. Nature 316, 371–372.

    PubMed  CAS  Google Scholar 

  • Narva, K. E., Wendell, D. L., Skrdla, M. P., and Van Etten, J. L. (1987) Molecular cloning and characterization of the gene encoding the DNA methyltransferase, M.CWBIII, from Chlorella virus NC-1A. Nucl. Acids Res. 15, 9807–9823.

    PubMed  CAS  Google Scholar 

  • Nelson, M., and McClelland, M. (1991) Site-specific methylation: effect on DNA modification methyltransferases and restriction endonucleases. Nucl. Acids Res. 19, 2045–2071.

    PubMed  CAS  Google Scholar 

  • Nestman, E. R. (1978) Mapping by transduction of mutator gene mut H in Escherichia coli. Mutat. Res. 49, 421–423.

    Google Scholar 

  • Nevers, P., and Spatz, H. C. (1975) Escherichia coli mutants uvrD and uvrE deficient in gene conversion of A-heteroduplexes. Mol. Gen. Genet. 139, 233–243.

    PubMed  CAS  Google Scholar 

  • Newmann, A. K., Rubin, R. A., Kim, S.-H., and Modrich, P. (1981) DNA sequences of structural genes for Eco RI DNA restriction and modification enzymes. J. Biol. Chem. 256, 2131–2139.

    Google Scholar 

  • Newman, E. B., D’Ari, R., and Lin, R. T. (1992) The leucine-Lrp regulon in E. coli: A global response in search of a raison d’être. Cell 68, 617–629.

    CAS  Google Scholar 

  • Noyer-Weidner, M., and Reiners-Schramm, L. (1988) Highly efficient positive selection of recombinant plasmids using a novel rglB-based Escherichia coli K-12 vector system. Gene 66, 269–278.

    PubMed  CAS  Google Scholar 

  • Noyer-Weidner, M., Diaz, R., and Reiners, L. (1986) Cytosine-specific DNA modification interferes with plasmid establishment in Escherichia coli Kl2: Involvement of rglB. Mol. Gen. Genet. 205, 469–475.

    PubMed  CAS  Google Scholar 

  • Noyer-Weidner, M., Jentsch, S., Pawlek, B., Günthert, U., and Trautner. T. A. (1983) Restriction and modification in Bacillus subtilis: DNA methylation potential of the related bacteriophages Z, SPR, SPß, O3T and pi 1. J. Virol. 46, 446 453.

    Google Scholar 

  • Nur, I., Szyf, M., Razin, A., Glaser, G., Rottem, S., and Razin, S. (1985) Procaryotic and eucaryotic traits of DNA methylation in Spiroplasmas (Mycoplasmas). J. Bacteriol. 164, 19–24.

    PubMed  CAS  Google Scholar 

  • Nwankwo, D. O., and Wilson, G. G. (1988) Cloning and expression of the MspI restriction and modification genes. Gene 64, 1–8.

    PubMed  CAS  Google Scholar 

  • Ogden, G. B., Pratt, M. J., and Schaechter, M. (1988) The replicative origin of the E. coli chromosome binds to cell membranes only when hemimethylated. Cell 54, 127–135.

    CAS  Google Scholar 

  • Oka, A., Sugimoto, K., Takanami, M., and Hirota, Y. (1980) Replication origin of the Escherichia coli K-12 chromosome: the size and structure of the minimum DNA segment carrying the information for autonomous replication. Mol. Gen. Genet. 178, 9–20.

    PubMed  CAS  Google Scholar 

  • Orbach, M. J., Schneider, W. P., and Yanofsky, C. (1988) Cloning of methylated transforming DNA from Neurospora crassa in Escherichia coli. Molec. Cell. Biol. 8, 2211–2213.

    PubMed  CAS  Google Scholar 

  • Patnaik, P. K., Merlin, S., and Polisky, B. (1990) Effect of altering GATC sequences in the Plasmid ColEl primer promoter. J. Bacteriol. 172, 1762–1768.

    PubMed  CAS  Google Scholar 

  • Perez-Casal, J. F., Gammie, A. E., and Crosa, J. H. (1989) Nucleotide sequence analysis and expression of the minimum REPI replication region and incompatibility determinants of pColV-K30. J. Bacteriol. 171, 2195–2201.

    PubMed  CAS  Google Scholar 

  • Peterson, K. R., Wertman, K. F., Mount, D. W., and Marinus, M. G. (1985) Viability of Escherichia coli K-12 DNA adenine methylase (dam) mutants requires increased expression of specific genes in the SOS regulon. Mol. Gen. Genet. 201, 14–19.

    PubMed  CAS  Google Scholar 

  • Piekarowicz, A., Yuan, R., and Stein, D. C. (1991a) Isolation of temperature-sensitive McrA and McrB mutations and complementation analysis of the McrBC region of Escherichia coli K-12. J. Bacteriol. 173, 150–155.

    PubMed  CAS  Google Scholar 

  • Piekarowicz, A., Yuan, R., and Stein, D. C. (1991b) A new method for the rapid identification of genes encoding restriction and modification enzymes. Nucl. Acids Res. 19, 1831–1835.

    PubMed  CAS  Google Scholar 

  • Piekarowicz, A., Bickle, T. A. Shepherd, J. C. W., and Ineichen, K. (1981) The DNA sequence recognised by the Hinflll restriction endonuclease. J. Mol. Biol. 146, 167–172.

    PubMed  CAS  Google Scholar 

  • Plumbridge, J. (1987) The role of dam methylation in controlling gene expression. Biochimie 69, 439–443.

    PubMed  CAS  Google Scholar 

  • Pogolotti, A. L., Ono, A., Subramaniam, R., and Santi, D. V. (1988) On the mechanism of DNA-adenine methylase. J. Biol. Chem. 263, 7461–7464.

    PubMed  CAS  Google Scholar 

  • Pósfai, J., Bhagwat, A. S., Pósfai, G., and Roberts, R. J. (1989) Predictive motifs derived from cytosine methyltransferases. Nucl. Acids Res. 17, 2421–2435.

    PubMed  Google Scholar 

  • Pósfai, G., Kim, S. C., Szilàk, L., Koväcs, A., and Venetianer, P. (1991) Complementation by detached parts of GGCC-specific DNA methyltransferases. Nucl. Acids Res. 19, 4843–4847.

    PubMed  Google Scholar 

  • Pósfai, G., Baldauf, F., Erdei, S., Pósfai, J., Venetianer, P., and Kiss, A. (1984) Structure of the gene coding for the sequence specific DNA-methyltransferase of B. subtilis phage SPR. Nucl. Acids Res. 12, 9039–9049.

    PubMed  Google Scholar 

  • Povilionis, P. L., Lubys, A. A., Vaisvila, R. I., Kulakauskas, S. T., and Janulaitis, A. A. (1989) Investigation of methyl-cytosine specific restriction in Escherichia coli K-12. Genetika 25, 753–755.

    Google Scholar 

  • Prentki, P., Chandler, M., and Caro, L. (1977) Replication of the prophage PI during the cell cycle of Escherichia coli. Mol. Gen. Genet. 152, 71–76.

    PubMed  CAS  Google Scholar 

  • Price, C., Linger, J., Bickle, T. A., Firman, K., and Glover S. W. (1989) Basis for changes in DNA recognition by EcoR124 and Eco R124/3 type I DNA restriction and modification enzymes. J. Mol. Biol. 205, 115–125.

    PubMed  CAS  Google Scholar 

  • Pukkila, P. J., Peterson, J., Herman, G., Modrich, P., and Meselson, M. (1983) Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Genetics 104, 571–582.

    PubMed  CAS  Google Scholar 

  • Radman, M., and Wagner, R. (1986) Mismatch repair in Escherichia coli. Ann. Rev. Genet. 20, 523–538.

    PubMed  CAS  Google Scholar 

  • Raleigh, E. A. (1992) Organization and function of the mcrBC genes of E. coli K-12. Mol. Microbiol. 6, 1079–1086.

    CAS  Google Scholar 

  • Raleigh, E. A., and Wilson, G. (1986) Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc. Natl. Acad. Sci. USA 83, 9070–9074.

    PubMed  CAS  Google Scholar 

  • Raleigh, E. A., Trimarchi, R., and Revel, H. (1989) Genetic and physical mapping of the mcrA (rglA) and mcrB (rglB) loci of Escherichia coli K 12. Genetics 122, 279–296.

    PubMed  CAS  Google Scholar 

  • Raleigh, E. A., Murray, N. E., Revel, H. Blumenthal, R. M., Westaway, D., Reith, A. D., Rigby, P. W. J., Elhai, J., and Hanahan, D. (1988) McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucl. Acids Res. 16, 1563–1575.

    CAS  Google Scholar 

  • Raleigh, E. A., Benner, J., Bloom, F., Braymer, H. D., DeCruz, E., Dharmalingam, K., Heitman, J., Noyer-Weidner, M., Piekarowicz, A., Kretz, P. L., Short, J. M., and Woodcock, D. (1991) Nomenclature relating to restriction of modified DNA in Escherichia coli. J. Bacteriol. 173, 2707–2709.

    PubMed  CAS  Google Scholar 

  • Ravi, R. S., Sozhamannan, S., and Dharmalingam, K. (1985) Transposon mutagenesis and genetic mapping of the rglA and rglB loci of Escherichia coli. Mol. Gen. Genet. 198, 390–392.

    PubMed  CAS  Google Scholar 

  • Renbaum, P., Abrahamove, D., Fainsod, A., Wilson, G. G., Rottem, S., and Razin, A. (1990) Cloning, characterization, and expression in Escherichia coli of the gene coding for the CpG DNA methylase from Spiroplasma sp. strain MQ1 (MSssI). Nucl. Acids Res. 18, 1145–1152.

    PubMed  CAS  Google Scholar 

  • Revel, H., (1967) Restriction of nonglucosylated T-even bacteriophage: properties of permissive mutants of Escherichia coli B and K-12. Virology 31, 688–701.

    PubMed  CAS  Google Scholar 

  • Revel, H., (1983) DNA modification: glycosylation. In: Bacteriophage T4. pp. 156 - 165. Eds C. K. Mathews, E. M. Kutter, G. Mosig and P. Berget. American Society for Microbiology. Washington, D. C.

    Google Scholar 

  • Roberts, D., Hoopes, B. C., McClure, W. R., and Kleckner, N. (1985) IS/0 transposition is regulated by DNA adenine methylation. Cell 43, 117–130.

    PubMed  CAS  Google Scholar 

  • Roberts, R. J. (1990) Restriction enzymes and their isoschizomers. Nucl. Acids Res. 18, 2331–2361.

    PubMed  CAS  Google Scholar 

  • Roberts, J. R., and Macelis, D. (1991) Restriction enzymes and their isoschizomers. Nucl. Acids. Res. 19, 2077–2109.

    PubMed  CAS  Google Scholar 

  • Rosenberg, J. M. (1991) Structure and function of restriction endonucleases. Curr. Opin. Struct. Biol. 1, 104–113.

    CAS  Google Scholar 

  • Ross, T. K., Achberger, E. C., and Braymer, H. D. (1987) Characterization of the Escherichia coli modified cytosine restriction (mcrB) gene. Gene 61, 277–289.

    PubMed  CAS  Google Scholar 

  • Ross, T. K., Achberger, E. C., and Braymer, H. D. (1989a) Nucleotide sequence of the mcrB region of Escherichia coli K-12 and evidence for two independent translational initiation sites at the mcrB locus. J. Bacteriol. 171, 1974–1981.

    PubMed  CAS  Google Scholar 

  • Ross, T. K., Achberger, E. C., and Braymer, H. D. (1989b) Identification of a second polypeptide required for mcrB restriction of 5-methylcytosine-containing DNA in Escherichia coli K-12. Mol. Gen. Genet. 216, 402–407.

    PubMed  CAS  Google Scholar 

  • Rubin, R. A., and Modrich, P. (1977) EcoRI methylase. Physical and catalytic properties of the homogeneous enzyme. J. Biol. Chem. 252, 7265–7272.

    PubMed  CAS  Google Scholar 

  • Russell, D. W., and Zinder, N. D. (1987) Hemimethylation prevents DNA replication in E. coli. Cell. 50, 1071–1079.

    CAS  Google Scholar 

  • Rydberg, B. (1978) Bromouracil mutagenesis and mismatch repair in mutator strains of Escherichia coli. Mutation Res. 52, 11–24.

    PubMed  CAS  Google Scholar 

  • Sain, B., and Murray, N. E., (1980) The hsd (host specificity) genes of E. coli Kl2. Mol. Gen. Genet. 180, 35–46.

    CAS  Google Scholar 

  • Santi, D. V., Garrett, C. E., and Barr, P. J. (1983) On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 33, 9–10.

    PubMed  CAS  Google Scholar 

  • Schaaper, R. M. (1988) Mechanisms of mutagenesis in the Escherichia coli mutator mutD5: Role of DNA mismatch repair. Proc. Natl. Acad. Sci. USA 85, 8126–8130.

    PubMed  CAS  Google Scholar 

  • Schlagman, S., and Hattman, S. (1983) Molecular cloning of a functional dam + gene coding for phage T4 DNA adenine methylase. Gene 22, 139–156.

    PubMed  CAS  Google Scholar 

  • Schlagman, S., Hattman, S., May, M. S., and Berger, L. (1976) In vivo methylation by Escherichia coli K-12 mec + deoxyribonucleic acid-cytosine methylase protects against in vitro cleavage by the RII restriction endonuclease (R EcoRll) J. Bacteriol. 126, 990–996.

    PubMed  CAS  Google Scholar 

  • Schneider-Scherzer, E., Auer, B., deGroot, E. J., and Schweiger, M. (1990) Primary structure of a DNA (N6-adenine)-methyltansferase from Escherichia coli virus Tl. J. Biol. Chem. 265, 6086–6091.

    PubMed  CAS  Google Scholar 

  • Schoner, B., Kelly, S., and Smith, H. O. (1983) The nucleotide sequence of the Hhall restriction and modification genes from Haemophilus haemolyticus. Gene 24, 227–236.

    PubMed  CAS  Google Scholar 

  • Scott (1984) Regulation of plasmid replication. Microbiol. Rev. 48, 1–23.

    PubMed  CAS  Google Scholar 

  • Segev, N., and Cohen, G. (1981) Control of circularization of bacteriophage PI DNA in Escherichia coli. Virology 114, 333–342.

    PubMed  CAS  Google Scholar 

  • Segev, N., Laub. A., and Cohen, G. (1980) A circular form of bacteriophage PI DNA made in lytically infected cells of Escherichia coli. Virology 101, 261–271.

    CAS  Google Scholar 

  • Seiler, A., Blöcker, H., Frank, R., and Kahmann, R. (1986) The mom gene of bacteriophage Mu: the mechanism of methylation-dependent expression. EMBO J. 5, 2719–2278.

    PubMed  CAS  Google Scholar 

  • Silverman, M., Zieg, J., Hilmen, M., and Simon, M. (1979) Phase variation in Salmonella: Genetic analysis of a recombinational switch. Proc. Natl. Acad. Sci. USA 76, 391–395.

    PubMed  CAS  Google Scholar 

  • Skarstad, K., Boye, E., and Steen, H. B. (1986) Timing of initiation of chromosome replication in individual Escherichia coli cells. EMBO J. 5, 1711–1717.

    PubMed  CAS  Google Scholar 

  • Sladek, T. L., and Maniloff, J. (1987) Endonuclease from Acholeplasma laidlawii strain JA1 associated with in vivo restriction of DNA containing 5-methylcytosine. Isr. J. Med. Sci. 23, 423–426.

    PubMed  CAS  Google Scholar 

  • Sladek, T. L., Nowak, J. A., Maniloff, J. (1986) Mycoplasma restriction: identification of a new type of restriction specificity for DNA containing 5-methylcytosine. J. Bacteriol. 165, 219–225.

    PubMed  CAS  Google Scholar 

  • Slatko, B. E., Benner, J. S., Jager-Quinton, T., Moran, L. S., Simcox, T. G., Van Cott, E. M., and Wilson, G. G. (1987) Cloning, sequencing and expression of the Taql restriction-modification system. Nucl. Acids Res. 15, 9781–9796.

    PubMed  CAS  Google Scholar 

  • Slatko, B. E., Croft, R., Moran, L. S., and Wilson, G. G. (1988) Cloning and analysis of the HaeIII and HaeII methyltransferase genes. Gene 74, 45–50.

    PubMed  CAS  Google Scholar 

  • Smith, D. W., Garland, A. M., Herman, G., Enns, R. E., Baker, T. A., and Zyskind, J. W. (1985) Importance of state of methylation of oriC GATC sites in initiation of DNA replication in Escherichia coli. EMBO J. 4, 1319–1326.

    PubMed  CAS  Google Scholar 

  • Smith, H. O., and Nathans, D. (1973) A suggested nomenclature for bacterial host modification and restriction systems and their enzymes. J. Mol. Biol. 81, 419–423.

    PubMed  CAS  Google Scholar 

  • Smith, H. O., Annau, T. M., and Chandrasegaran, S. (1990) Finding sequence motifs in groups of functionally related proteins. Proc. Natl. Acad. Sci. U.S.A. 87, 826–830.

    PubMed  CAS  Google Scholar 

  • Sohail, A., Lieb, M., Dar, M., and Bhagwat, A. S. (1990) A gene required for very short patch repair in Escherichia coli adjacent to the DNA cytosine methylase gene. J. Bacteriol. 172, 4214–4221.

    PubMed  CAS  Google Scholar 

  • Som, S., and Friedman, S. (1990) Direct photolabeling of the iscoRII methyltransferase with S-adenosyl-L-methionine. J. Biol. Chem. 265, 4278–4283.

    PubMed  CAS  Google Scholar 

  • Som, S., and Friedman, S. (1991) Identification of a highly conserved domain in the £coRII methyltransferase which can be photolabeled with S-adenosyl-L-[methyl-3H]methionine. J. Biol. Chem. 266, 2937–2945.

    PubMed  CAS  Google Scholar 

  • Som, S., Bhagwat, A. S., and Friedman, S. (1987) Nucleotide sequence and expression of the gene encoding the EcoRII modification enzyme. Nucl. Acids Res. 15, 313–323.

    PubMed  CAS  Google Scholar 

  • Spielmann-Ryser, J., Moser, M., Kast, P., and Weber, H. (1991) Factors determining the frequency of plasmid cointegrate formation mediated by insertion sequence IS3 from Escherichia coli. Mol. Gen. Genet. 236, 441–448.

    Google Scholar 

  • Stefan, C., Xia, Y., and Van Etten, J. L. (1991) Molecular cloning and characterization of the gene encoding the adenine methyltransferase M.CviRI from Chlorella virus XZ-6E. Nucl. Acids Res. 19, 307–311.

    PubMed  CAS  Google Scholar 

  • Sternberg, N. (1990) Bacteriophage PI cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Natl. Acad. Sci. USA 87, 103–107.

    PubMed  CAS  Google Scholar 

  • Sternberg, N., and Coulby, J. (1987a) Recognition and cleavage of the bacteriophage PI packaging site (pac). I. Differential processing of the cleaved ends in vivo. J. Mol. Biol. 194, 453–468.

    PubMed  CAS  Google Scholar 

  • Sternberg, N., and Coulby, J. (1987b) Recognition and cleavage of the bacteriophage PI packaging site (pac). II. Functional limit of pac and location of pac cleavage termini, J. Mol. Biol. 194, 469–479.

    PubMed  CAS  Google Scholar 

  • Sternberg, N., and Coulby, J. (1990) Cleavage of the bacteriophage PI packaging site (pac) is regulated by adenine methylation. Proc. Natl. Acad. Sci. USA 87, 8070–8074.

    PubMed  CAS  Google Scholar 

  • Sternberg, N., Sauer, B., Hoess, R., and Abremski, K. (1986) Bacteriophage PI ere gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J. Mol. Biol. 187, 197–212.

    PubMed  CAS  Google Scholar 

  • Studier, F. W., and Bandyopadhyay, P. K. (1988) Model how type I restriction enzymes select cleavage sites in DNA. Proc. Natl. Acad. Sci. USA 85, 4677–4681.

    PubMed  CAS  Google Scholar 

  • Sugisaki, H., Kita, K., and Takanami, M. (1989) The FokI restriction-modification system. II Presence of two domains in Fok I methylase responsible for modification of different DNA strands. J. Biol. Chem. 264, 5757–5761.

    PubMed  CAS  Google Scholar 

  • Sugisaki, H., Yamamoto, K., and Takanami, M. (1991) The Hgal restriction-modification system contains two cytosine methylase genes responsible for modification of different DNA strands. J. Biol. Chem. 266, 13,952–13, 957.

    CAS  Google Scholar 

  • Suri, B., Nagaraja, V., and Bickle, T. A. (1984) Bacterial DNA modification. Curr. Top. Microbiol. Immunol. 108, 1–9.

    PubMed  CAS  Google Scholar 

  • Sutclifïe, J. G. (1979) Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harbor Symp. Quant. Biol. 43, 77–90.

    Google Scholar 

  • Sutherland, E., Coe. L., and Raleigh, E. A. (1992) McrBC: a multisubunit GTP-dependent restriction endonuclease. J. Mol. Biol. 225, 327–348.

    CAS  Google Scholar 

  • Swinton, D., Hattman, S., Crain, P. F., Cheng, C.-S., Smith, D. L., and McCloskey, J. A. (1983) Purification and characterization of the unusual deoxynucleoside, a-N-(9-β-D-2’-de-oxyribofuranosylpurin-6-yl)glycinamide, specified by the phage Mu modification function. Proc. Natl. Acad. Sei. USA 80, 7400–7404.

    CAS  Google Scholar 

  • Sznyter, L. A., Slatko, B., Moran, L., O’Donnell, K. H., and Brooks, J. E. (1987) Nucleotide sequence of the Dde I restriction-modification system and characterization of the methylase protein. Nucl. Acids Res. 15, 8249–8266.

    PubMed  CAS  Google Scholar 

  • Szybalski, W., Kim, S. C., Hasan, N., and Podhajska, A. J. (1991) Class-IIS restriction enzymes - a review. Gene 100, 13–26.

    PubMed  CAS  Google Scholar 

  • Tao, T., Bourne, J. C., and Blumen thai, R. M. (1991) A family of regulatory genes associated with type II restriction-modification systems. J. Bacteriol. 173, 1367–1375.

    PubMed  CAS  Google Scholar 

  • Tao, T., Walter, J., Brennan, K. F., Cotterman, M. M., and Blumenthal, R. M. (1989) Sequence, internal homology and high-level expression of the gene for a DNA-(cytosine N4)-methyltransferase, M.Pvull. Nucl. Acids Res. 17, 4161–4175.

    CAS  Google Scholar 

  • Toussaint, A. (1976) The DNA modification function of temperate phage Mu-1. Virol. 70, 17–27.

    CAS  Google Scholar 

  • Tran-Betcke, A., Behrens, B., Noyer-Weidner, M., and Trautner, T. A. (1986) DNA methyl-transferase genes of Bacillus subtilis phages: comparison of their nucleotide sequences. Gene 42, 89–96.

    PubMed  CAS  Google Scholar 

  • Tran-Betcke, A., Behrens, B., Noyer-Weidner, M., and Trautner, T. A. (1986) DNA methyl-transferase genes of Bacillus subtilis phages: comparison of their nucleotide sequences. Gene 42, 89–96.

    PubMed  CAS  Google Scholar 

  • Trautner, T. A., Balganesh, T. S., and Pawlek, B. (1988) Chimeric multispecific DNA methyltransferases with novel combinations of target recognition. Nucl. Acids Res. 16, 6649–6657.

    PubMed  CAS  Google Scholar 

  • Trautner, T. A., Pawlek, B., and Behrens, B. (1992) The size and arrangement of individual target recognizing domains of the multispecific DNA-C5-methyltransferase M.SPRI. To be submitted.

    Google Scholar 

  • Vinella, D., Jaffé, A., D’Ari, R., Kohiyama, M., and Hughes, P. (1992) Chromosome partitioning in Escherichia coli in the absence of dam -directed methylation. J. Bacteriol. 174, 2388–2390.

    PubMed  CAS  Google Scholar 

  • van de Putte, P., Plasterk, P., and Kujpers, A. (1984) A Mu gin complementing function and an invertible DNA region in Escherichia coli K-12 are situated on the genetic element e 14. J. Bacteriol. 158, 417–422.

    Google Scholar 

  • Wagner, R., and Meselson, M. (1976) Repair tracts in mismatched DNA heteroduplexes. Proc. Natl. Acad. Sei. USA 73, 4135–4139.

    CAS  Google Scholar 

  • Wagner, R., Dohet, C., Jones, M., Doutriaux, M. P., Hutchinson, F., and Radman, M. (1984) Involvement of Escherichia coli mismatch repair in DNA replication and recombination. Cold Spring Harbor Symp. Quant. Biol. 49, 611–615.

    PubMed  CAS  Google Scholar 

  • Waite-Rees, P. A., Keating, C. J., Moran, L. S., Slatko, B. E., Hornstra, L. J., and Benner, J. S. (1991) Characterization and expression of the Escherichia coli Mrr restriction system. J. Bacteriol. 173, 5207–5219.

    PubMed  CAS  Google Scholar 

  • Walder, R. Y., Hartley, J. L., Donelson, J. E., and Walder, J. A. (1981) Cloning and expression of the Pst I restriction-modification system in Escherichia coli. Proc. Natl. Acad. Sei. USA 78, 1503–1507.

    CAS  Google Scholar 

  • Walder, R. Y., Langtimm C. J., Chatterjee, R., and Walder, J. A. (1983) Cloning of the Mspl modification enzyme. The site of modification and its effects on cleavage by Mspl and Hpall. J. Biol. Chem. 258, 1235 1241.

    Google Scholar 

  • Walder, R. Y., Walder, J. A., and Donelson, J. E. (1984) The organization and complete nucleotide sequence of the Pst\ restriction-modification system. J. Biol. Chem. 259, 8015–8026.

    PubMed  CAS  Google Scholar 

  • Walter, J., Noyer-Weidner, M., and Trautner, T. A. (1990) The amino acid sequence of the CCGG recognizing DNA methyltransferase M. BsuFl: implications for the analysis of sequence recognition by cytosine DNA methyltransferases. EMBO J. 9, 1007–1013.

    PubMed  CAS  Google Scholar 

  • Walter, J., Noyer-Weidner, M., and Trautner, T. A. (1990) The amino acid sequence of the CCGG recognizing DNA methyltransferase M. BsuFl: implications for the analysis of sequence recognition by cytosine DNA methyltransferases. EMBO J. 9, 1007–1013.

    PubMed  CAS  Google Scholar 

  • Welsh, K. M., Lu, A.-L., Clark, S., and Modrich, P. (1987) Isolation and characterization of the Escherichia coli mut H gene product. J. Biol. Chem. 262, 15, 625–15, 629.

    Google Scholar 

  • Whittaker, P. A., Campbell, A. J. B., Southern, E. M., and Murray, N. E. (1988) Enhanced recovery and restriction mapping of DNA fragments cloned in a new X vector. Nucl. Acids Res. 16, 6725–6736.

    PubMed  CAS  Google Scholar 

  • Wilke, K., Rauhut, E., Noyer-Weidner, M., Lauster, R., Pawlek, B., Behrens, B., and Trautner, T. A. (1988) Sequential order of target-recognizing domains in multispecific DNA-methyltansferases. EMBO J. 7, 2601–2609.

    PubMed  CAS  Google Scholar 

  • Wilson, G. G. (1991) Organization of restriction-modification systems. Nucl. Acids Res. 19, 2539–2566.

    PubMed  CAS  Google Scholar 

  • Wilson, G. G. and Murray, N. E. (1991) Restriction and modification systems. Annu. Rev. Genet. 25, 585–627.

    PubMed  CAS  Google Scholar 

  • Winkler, F. K., (1992) Structure and function of restriction endonucleases. Curr. Opin. Struct. Biol. 2, 93–99.

    Google Scholar 

  • Woodcock, D. M., Crowther, P. J., Doherty, J., Jefferson, S., DeCruz, E., Noyer-Weidner, M., Smith, S. S., Michael, M. Z, and Graham, M. W. (1989) Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucl. Acids Res. 77, 3469–3478.

    Google Scholar 

  • Wu, J. C., and Santi, D. V. (1987) Kinetic and catalytic mechanism of Hhal methyltrans- ferase. J. Biol. Chem. 262, 4776–4786.

    Google Scholar 

  • Wyszynski, M. W., Gabbara, S., and Bhagwat, A. S. (1992) Substitutions of a cysteine conserved among DNA cytosine methylases result in a variety of phenotypes. Nucl. Acids Res. 20, 319–326.

    PubMed  CAS  Google Scholar 

  • Xu, G., Kapfer, W., Walter, J., and Trautner, T. A. (1992) BsuBl: an isospecific restriction and modification system of PstI - characterization of the BsuBl genes and enzymes. Submitted to Nucl. Acids Res.

    Google Scholar 

  • Yamaki, H., Ohtsubo, E., Nagai, K., and Maeda, Y. (1988) The oriC unwinding by dam methylation in Escherichia coli. Nucl. Acids Res. 16, 5067–5073.

    PubMed  CAS  Google Scholar 

  • Yin, J. C. P., Krebs, M. P., and Reznikoff, W. S. (1988) Effect of dam methylation on Tn5 transposition. J. Mol. Biol. 199; 35–45.

    PubMed  CAS  Google Scholar 

  • Yuan, R. (1981) Structure and mechanism of multifunctional restriction endonucleases. Ann. Rev. Biochem. 50; 285–315.

    PubMed  CAS  Google Scholar 

  • Yuan, R., and Hamilton, D. L. (1984) Type I and type III restriction-modification enzymes in: DNA methylation, pp. 11–37. Eds A. Razin, H. Cedar and A. D. Riggs. Springer-Verlag, New York.

    Google Scholar 

  • Yuan, R., Bickle, T. A., Ebbers, W., and Brack, C. (1975) Multiple steps in DNA recognition by restriction endonuclease from E. coli K. Nature 256, 556–560.

    CAS  Google Scholar 

  • Yun, T., and Vapnek, D. (1977) Electron microscopic analysis of bacteriophages PI, PI Cm, and P7. Determination of genome sizes, sequence homology, and location of antibiotic resistance determinants. Virology 77, 376–385.

    PubMed  CAS  Google Scholar 

  • Zell, R., and Fritz, H.-J. (1987) DNA mismatch-repair in Escherichia coli counteracting the hydrolytic deamination of 5-methyl-cytosine residues. EMBO J. 6, 1809–1815.

    PubMed  CAS  Google Scholar 

  • Zyskind, J. W., and Smith, D. W. (1986) The bacterial origin of replication, oriC. Cell 46, 489–490.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Noyer-Weidner, M., Trautner, T.A. (1993). Methylation of DNA in Prokaryotes. In: Jost, JP., Saluz, HP. (eds) DNA Methylation. EXS, vol 64. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9118-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9118-9_4

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9915-4

  • Online ISBN: 978-3-0348-9118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics