Skip to main content

Methylation of cytosine influences the DNA structure

  • Chapter
DNA Methylation

Part of the book series: EXS ((EXS,volume 64))

Abstract

In the past decade it has become increasingly clear that DNA has the potential to adopt a variety of unusual secondary structures which deviate from the classical right-handed B-DNA form. Intrinsic properties of the DNA molecule (primary base sequence and base modifications, degree of supercoiling) determine whether such an unusual structure is possible. Environmental factors (like ionic strength or pH of the medium, temperature, solvent polarity, interactions with proteins or drugs) have a strong influence on whether the structure is actually formed or not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Behe, M. J. (1986) Vacuum UV CD of the low-salt Z-forms of poly(rG-dC)poly(rG-dC), and poly(dG-m5dC) poly(dG-m5dC). Biopolymers 25, 519–523.

    Article  PubMed  CAS  Google Scholar 

  • Behe, M., and Felsenfeld, G. (1981) Effects of methylation on a synthetic polynucleotide: the B-Z transition in poly(dG-m5dC)poly(dG-m5dC).Proc. Natl. Acad. Sei. USA 78, 1619–1623.

    Article  CAS  Google Scholar 

  • Behe, M., Zimmerman, S., and Felsenfeld, G. (1981) Changes in the helical repeat of poly(dG-m5dC) poly(dG-m5dC) and poly(dG-dC)poly(dG-dC) associated with the B-Z transition.Nature 293, 233–235.

    Article  PubMed  CAS  Google Scholar 

  • Chaires, J. B., and Sturtevant, J. M. (1986) Thermodynamics of the B to Z transition in poly(m5dG-dC). Proc. Natl. Aca. Sei. USA 83, 5479–5483.

    Article  CAS  Google Scholar 

  • Chatterji, D. (1988) Terbium(III) induced Z to A transition in poly(dG-m5dC). Bipolymers 27, 1183 - 1186.

    Article  CAS  Google Scholar 

  • Chen, C.-W., Cohen, J. S., and Behe, M. (1983) B to Z transition of double-stranded poly[deoxyguanylyl(3/-5,)-5-methyldeoxycytidine] in solution by phosphorus-31 and car- bon-13 nuclear magnetic resonance spectroscopy. Biochemistry 22, 2136–2142.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F.-M. (1986) Conformational lability of poly(dG-m5dC)poly(dG-m5dC). Nucl. Acids Res. 14, 5081–5097.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H. H., Charney, E., and Rau, D. C. (1982) Length changes in solution accompanying the B-Z transition of poly(dG-m5dC) induced by Co(NH3)63+. Nucl Acids Res. 10, 3561–3571.

    Article  PubMed  CAS  Google Scholar 

  • Devarajan, S., and Shafer, R. H. (1986) Role of divalent cations on DNA polymorphism under low ionic strength conditions. Nucl. Acids Res. 14, 5099–5109.

    Article  PubMed  CAS  Google Scholar 

  • Diekmann, S. (1987) DNA methylation can enhance or induce DNA curvature. EMBO J. 6, 4213–4217.

    PubMed  CAS  Google Scholar 

  • Feigon, J., Wang, A. H.-J., van der Marel, G. A., Van Boom, J. H., and Rich A. (1984) A one- and two-dimensional NMR study of the B to Z transition of (m5dC-dG)3 in methanolic solution. Nucl. Acids Res. 12, 1243–1263.

    Article  PubMed  CAS  Google Scholar 

  • Feuerstein, B. G., Marton, L. J., Keniry, M. A., Wade, D. L., and Shafer, R. H. (1985) New DNA polymorphism: evidence for a low salt, left-handed form of poly(dG-m5dC). Nucl. Acids Res. 13, 4133–4141.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, S., Wang, A. H.-J., van der Marel, G., van Boom, J. H., and Rich, A. (1982) Molecular structure of (m5dC-dG)3: the role of the methyl group on 5-methyl cytosine in stabilizing Z-DNA. Nucl. Acids Res. 10, 7879–7892.

    Article  PubMed  CAS  Google Scholar 

  • Gill, J. E., Mazrimas, J. A., and Bishop, C. C. Jr. (1974) Physical studies on synthetic DNAs containing 5-methyl-cytosine. Biochim. Biophys. Acta 335, 330–348.

    CAS  Google Scholar 

  • Hacques, M.-F., and Marion, C. (1986) DNA polymorphism: spectroscopic and electro-optic characterizations of Z-DNA and other types of left-handed helical structures induced by Ni2+. Biopolymers 25, 2281–2293.

    Article  PubMed  CAS  Google Scholar 

  • Hagerman, P. J. (1990) Pyrimidine 5-methyl groups influence the magnitude of DNA curvature. Biochemistry 29, 1980–1983.

    Article  PubMed  CAS  Google Scholar 

  • Klump, H. H., and Löffler, R. (1985) Reversible helix-coil transitions of left-handed Z-DNA structures. Biol. Chem. Hoppe-Seyler 366, 345–353.

    Article  CAS  Google Scholar 

  • Klysik, J., Stirdivant, S. M., Singleton, C. K., Zacharias, W., and Wells, R. D. (1983) Effects of 5 cytosine methylation on the B-Z transition in DNA restriction fragments and recombinant plasmids. J. Mol. Biol. 168, 51–71. Koo, H. S., Wu, H. M. and Crothers, D. M. (1986) DNA bending at adenine-thymine tracts. Nature 320; 501 - 506.

    Google Scholar 

  • Koo, H. S., Wu, H. M. and Crothers, D. M. (1986) DNA bending at adenine-thymine tracts. Nature 320, 501–506.

    Article  PubMed  CAS  Google Scholar 

  • Koo, H.-S., and Crothers, D. M. (1987) Chemical determinants of DNA bending at adenine-thymine tracts. Biochemistry 26, 3745–3458.

    Article  PubMed  CAS  Google Scholar 

  • Krueger, W. C., and Prairie, M. D. (1985) A low-salt form of poly(dG-5M-dC)poly(dG-5M- dC).Biopolymers 24, 905 - 910.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. S., Woodsworth, M. L., Latimer, L. J. P., and Morgan, A. R. (1984) Poly(pyrimidine) ·poly(purine) synthetic DNAs containing 5-methylcytosine form stable triplexes at neutral pH. Nucl. Acids Res. 12, 6603–6614.

    Article  PubMed  CAS  Google Scholar 

  • Lilley, D. M. J. (1986) Bent molecules — how and why? Nature 320, 487–488.

    Article  PubMed  CAS  Google Scholar 

  • Lilley, D. M. J., Sullivan, K. M., Murchie, A. I. H., and Furlong, J. C. (1988) Cruciform extrusion in supercoiled DNA - mechanisms and contextual influence, in: Unusual DNA Structures, pp. 55–72. Eds R. D. Wells and S. C. Harvey. Springer Verlag, New York.

    Google Scholar 

  • Maher III, L. J., Wold, B., and Dervan, P. B. (1989) Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science 245, 725–730.

    Article  PubMed  CAS  Google Scholar 

  • Mcintosh, L. P., Grieger, I., Eckstein, F., Zarling, D. A., van de Sande, J. H., and Jovin, T. M. (1983) Left-handed helical conformation of poly[d(A-m5C) d(G-T)]. Nature 304, 83–86.

    CAS  Google Scholar 

  • McLean, M. J., and Wells, R. D. (1988) The role of sequence in the stabilization of left-handed DNA helices in vitro and in vivo. Biochim. Biophys. Acta 950, 243–254.

    PubMed  CAS  Google Scholar 

  • Murchie, A. I. H., and Lilley, D. M. J. (1987) The mechanism of cruciform formation in supercoiled DNA: initial opening of central base pairs in salt-dependent extrusion. Nucl. Acids Res. 15, 9641–9654.

    Article  PubMed  CAS  Google Scholar 

  • Murchie, A. I. H., and Lilley, D. M. J. (1989) Base methylation and local DNA helix stability: effect on the kinetics of cruciform extrusion. J. Mol. Biol. 205, 593–602.

    Article  PubMed  CAS  Google Scholar 

  • Orbons, L. P. M., and Altona, C. (1986) Conformational analysis of the B and Z forms of the d(m5C-G)3 and d(Br5C-G)3 hexamers in solution: a 300-MHz and 500-MHz NMR study. Eur. J. Biochem. 160, 141 - 148.

    Article  PubMed  CAS  Google Scholar 

  • Pack, G. R., Prasad, C. V., Salafsky, J. S., and Wong, L. (1986) Calculations on the effect of methylation on the electrostatic stability of the B- and Z-conformers of DNA. Biopolymers 25, 1697–1715.

    Article  PubMed  CAS  Google Scholar 

  • Pearlman, D. A., and Kollman, P. A. (1990) The calculated free energy effects of 5-methyl cytosine on the B to Z transition in DNA. Biopolymers 29, 1193–1209.

    Article  PubMed  CAS  Google Scholar 

  • Plum, G. E., Park, Y.-W., Singleton, S. F., Dervan, P. B., and Breslauer, K. J. (1990) Thermodynamic characterization of the stability and the melting behaviour of a DNA triplex: a spectroscopic and calorimetric study. Proc. Natl. Acad. Sci. USA 87, 9436–9440.

    Article  PubMed  CAS  Google Scholar 

  • Rich, A., Nordheim, A., and Wang, A. H.-J. (1984) The chemistry and biology of left-handed Z-DNA. Ann. Rev. Biochem. 53, 791–846.

    Article  PubMed  CAS  Google Scholar 

  • Sarma, M. H., Gupta, G., and Sarma, R. H. (1986) 500-MHz 1H NMR study of poly(dG) poly(dC) in solution using one-dimensional nuclear Overhauser effect. EBiochemistry 25, 3659–3665.

    Google Scholar 

  • Strobel, S. A., and Dervan, P. B. (1991) Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation. Nature 350, 172–174.

    Article  PubMed  CAS  Google Scholar 

  • Travers, A. A. (1990) Why bend DNA? Cell 60, 177 180.

    Google Scholar 

  • Trifanov, E. N., and Sussman, J. L. (1980) The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc. Natl. Acad. Sci. USA 77, 3816–3820.

    Article  Google Scholar 

  • Van Lier, J. J. C., Smits, M. T., and Buck, H. M. (1983) B-Z transition in methylated DNA: a quantum-chemical study. Eur. J. Biochem. 132, 55–62.

    Article  PubMed  Google Scholar 

  • Vorlicková, M., and Sági, J. (1991) Transitions of poly(dl-dC), poly(dI-methyl5dC) and poly(dI-bromo5dC) among and within the B-, Z-, A- and X-DNA families of conformation. Nucl. Acids Res. 19, 2343–2347.

    Article  PubMed  Google Scholar 

  • Vorlickova, M., and Sagi, J. (1989) Divalent cations are not required for the stability of the low-salt Z-DNA conformation in poly(dG-ethyl5dC). J. Biomol. Struct. Dyn. 7, 329–334.

    PubMed  Google Scholar 

  • Walker, G. T., and Aboul-ela, F. (1988) B-Z cooperativity and kinetics of poly(dG-m5dC) are controlled by an unfavorable B-Z interface energy. J. Biomol. Struct. Dyn. 5, 1209–1219.

    PubMed  CAS  Google Scholar 

  • Wells, R. D., Brennan, R., Chapman, K. A., Goodman, T. C, Hart, P. A., Hillen, W., Kellogg, D. R., Kilpatrick, M. W., Klein, R. D., Klysik, J., Lambert, P. F., Larson, J. E., Miglietta, J. J., Neuendorf, S. K., O’Connor, T. R., Singleton, C. K., Stirdivant, S. M., Veneziale, C. M., Wartell, R. M., and Zacharias, W. (1983) Left-handed DNA helices, supercoiling, and the B-Z junction. Cold Spring Harbor Symp. Quant. Biol., Vol. XLVII, pp. 77-84. Wells, R. D. (1988) Unusual DNA structures. J. Biol. Chem. 263, 1095–1098.

    Google Scholar 

  • Wells, R. D. (1988) Unusual DNA structures. J. Biol. Chem. 263, 1095–1098.

    PubMed  CAS  Google Scholar 

  • Wells, R. D., Collier, D. A., Hanvey, J. C., Shimizu, M., and Wohlrab, F. (1988) The chemistry and biology of unusual DNA structures adopted by oligopurine oligopyrimidine sequences. FASEB J. 2, 2939–2949.

    PubMed  CAS  Google Scholar 

  • Woisard, A., Guschlbauer, W., and Fazakerley, G. V. (1986) The low ionic strength form of the sodium salt of poly(dm5C-dG) is a B DNA. Nucl. Acids Res. 14, 3515–3519.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H.-Y., and Behe, M. J. (1985) Salt induced transitions between multiple conformations of poly(rG-m5dC)-poly(rG-m5dC). Nucl. Acids Res. 13, 3931–3940.

    Article  PubMed  CAS  Google Scholar 

  • Xodo, L. E., Manzini, G., Quadrifoglio, F., van der Marel, G. A., and van Boom, J. H. (1991) Effect of 5-methylcytosine on the stability of triple-stranded DNA - a thermodynamic study. Nucl. Acids Res. 19, 5625–5631.

    Article  PubMed  CAS  Google Scholar 

  • Zacharias, W. (1992) DNA methylation in vivo. Methods Enz. 272, 336–346.

    Article  Google Scholar 

  • Zacharias, W., Jaworski, A., and Wells, R. D. (1990) Cytosine methylation enhances Z-DNA formation in vivo. J. Bacteriol. 772, 3278–3283.

    Google Scholar 

  • Zacharias, W., O’Connor, T. R., and Larson, J. E. (1988) Methylation of cytosine in the 5-position alters the structural and energetic properties of the supercoil-induced Z-helix and of B-Z junctions. Biochemistry 27, 2970–2978.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, S. B. (1982) The three-dimensional structure of DNA. Ann. Rev. Biochem. 51, 395–427.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Zacharias, W. (1993). Methylation of cytosine influences the DNA structure. In: Jost, JP., Saluz, HP. (eds) DNA Methylation. EXS, vol 64. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9118-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9118-9_3

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9915-4

  • Online ISBN: 978-3-0348-9118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics