Skip to main content

DNA methylation and genomic imprinting in mammals

  • Chapter

Part of the book series: EXS ((EXS,volume 64))

Abstract

In mammalian sexual reproduction, each parent contributes a haploid set of chromosomes to the offspring. It is usually believed that these two haploid sets are on the whole equivalent in their function: reciprocal crosses show identical phenotypic effects at many genetic loci. Only two clear exceptions to this rule have been recognized: sex-linked inheritance and cytoplasmic inheritance (the latter is actually not linked to the nucleus). Therefore, it seems reasonable to assume that autosomal genes behave in the same manner no matter which parent they are contributed by. However, recent studies have revealed that parental origin does affect gene expression at certain autosomal loci. In other words, these autosomal regions somehow remember their parental origin and regulate gene activity according to that memory. These genes constitute the third category of exceptions to the principle of reciprocity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, N. D., Norris, M. L., and Surani, M. A. (1990) Epigenetic control of transgene expression and imprinting by genotype-specific modifiers. Cell 61, 853–861.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, D. P., Stoeger, R., Hermann, B. G., Saito, K., and Schweifer, N. (1991) The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87.

    Article  PubMed  CAS  Google Scholar 

  • Bartolomei, M. S., Zemel, S., and Tilghman, S. M. (1991) Parental imprinting of the mouse H19 gene. Nature 351, 153–155.

    Article  PubMed  CAS  Google Scholar 

  • Beechey, C. V., Cattanach, B. M., and Searle, A. G. (1990) Genetic imprinting map. Mouse Genome 87, 64–65.

    Google Scholar 

  • Bird, A. P. (1986) CpG-rich island and the function of DNA methylation. Nature 321, 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Cattanach, B. M. (1986) Parental origin effects in mice. J. Embryol. Exp. Morph. (Suppl.) 97, 137–150.

    Google Scholar 

  • Cattanach, B. M., and Beechey, C. V. (1990) Autosomal and X-chromosome imprinting. Development (Suppl.), 63–72.

    Google Scholar 

  • Cedar H. (1988) DNA methylation and gene activity. Cell 53, 3–4.

    Article  PubMed  CAS  Google Scholar 

  • Chaillet, J. R., Vogt, T. F., Beier, D. R., and Leder, P. (1991) Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell 66, 77–83.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, A. (1990) Genetic imprinting in clinical genetics. Development (Suppl.), 131–136.

    Google Scholar 

  • Collick, A., Reik, W., Barton, S. C., and Surani, M. A. H. (1988) CpG methylation of an X-linked transgene is determined by somatic events postfertilization and not germline imprinting. Development 104, 253–244.

    Google Scholar 

  • Cooper, D. W., VandeBerg, J. L., Sharman, G. B., and Poole, W. F. (1971) Phosphoglycerate kinase polymorphism in kangaroo provides further evidence for paternal X inactivation. Nature New Biol. 230, 155–157.

    Article  PubMed  CAS  Google Scholar 

  • Crouse, H. V. (1960) The controlling elements in sex chromosome behaviour in Sciara. Genetics 45, 1429–1443.

    PubMed  CAS  Google Scholar 

  • DeChiara, T. M., Robertson, E. J., and Efstratiadis, A. (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859.

    Article  PubMed  CAS  Google Scholar 

  • DeLoira, J. A., and Solter, D. (1990) A transgene insertional mutation at an imprinted locus in the mouse genome. Development (Suppl.), 73–79.

    Google Scholar 

  • Engler, P., Haasch, D., Pinkert, C. A., Doglio, L., Glymour, M., Brinster, R., and Storb, U. (1991) A strain-specific modifier on mouse chromosome 4 controls the methylation of independent transgenic loci. Cell 65, 939–947.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith, A. C., Cattanach, B. M., Barton, S. C., Beechey, C. V., and Surani, M. A. (1991) Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351, 667–670.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith, A. C., Reik, W., and Surani, M. A. (1990) Genomic imprinting and cancer. Cancer Surveys 9, 487–503.

    PubMed  CAS  Google Scholar 

  • Fisher, R. A. (1928) Two further notes on the origin of dominance. Am. Nat. 62, 571–574.

    Article  Google Scholar 

  • Fundele, R., Howlett, S. K., Kothary, R., Norris, M. L., Mills, W. E., and Surani, M. A. (1991) Developmental potential of parthenogenetic cells: role of genotype-specific modifiers. Development 113, 941–946.

    PubMed  CAS  Google Scholar 

  • Gartler, S. M., and Riggs, A. D. (1983) Mammalian X-chromosome inactivation. Annu. Rev. Genet. 17, 155–190.

    Article  PubMed  CAS  Google Scholar 

  • Grant, S. G., and Chapman, V. M. (1988) Mechanisms of X-chromosome regulation. Annu. Rev. Genet. 22, 199–233.

    Article  PubMed  CAS  Google Scholar 

  • Hadchouel, M., Farza, H., Simon, D., Tiollais, P., and Pourcel, C. (1987) Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation. Nature 329, 454–456.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. G. (1990) Genomic imprinting: review and relevance to human diseases. Am. J. Hum. Genet. 46, 103–123.

    Google Scholar 

  • Holiday, R., and Pugh, J. E. (1975) DNA modification mechanisms and gene activity during development. Science 187, 226–232.

    Article  Google Scholar 

  • Howlett, S. K., and Raik, W. (1991) Methylation levels of maternal and paternal genomes during preimplantation development. Development 113, 119–127.

    PubMed  CAS  Google Scholar 

  • Johnson, D. R. (1974) Hairpin-tail: a case of post-reductional gene action in the mouse egg. Genetics 76, 795–805.

    PubMed  CAS  Google Scholar 

  • Johnson, D. R. (1975) Further observations on the hairpin tail (Thp) mutation in the mouse. Genet. Res. 24, 207–213.

    Article  Google Scholar 

  • Kaslow, D. C., and Migeon, B. R. (1987) DNA methylation stabilizes X chromosome inactivation in eutherians but not in marsupials: evidence for multistep maintenance of mammalian X dosage compensation. Proc. Natl. Acad. Sci. USA 84, 6210–6214.

    Article  PubMed  CAS  Google Scholar 

  • Latham, K. E., and Solter, D. (1991) Effect of egg composition on the developmental capacity of androgenetic mouse embryos. Development 113, 561–568.

    PubMed  CAS  Google Scholar 

  • Lock, L. F., Takagi, N., and Martin, G. R. (1987) Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell 48, 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, M. F. (1972) X-chromosome inactivation and developmental patterns in mammals. Biol. Rev. 47, 1–35.

    Article  PubMed  CAS  Google Scholar 

  • Malcolm, S., Clayton-Smith, J., Nicholas, M., Robb, S., Webb, T., Armour, J. A. L., Jeffreys, A. J., and Pembrey, M. E. (1991) Uniparental disomy in Angelman’s syndrome. Lancet 337, 694–697.

    Article  PubMed  CAS  Google Scholar 

  • Mann, J. R., and Stewart, C. L. (1991) Development to term of mouse androgenetic aggregation chimeras. Development 113, 1325–1333.

    PubMed  CAS  Google Scholar 

  • McGowan, R., Campbell, R., Peterson, A., and Sapienza, C. (1989) Cellular mosaicism in the methylation and expression of hemizygous loci in the mouse. Genes Dev. 3, 1669–1676.

    Article  PubMed  CAS  Google Scholar 

  • Migeon, B. R., deBuer, S. J., and Axelman, J. (1989) Frequent depression of G6PD and HPRT on the marsupial inactive X chromosome associated with cell proliferation in vitro. Exp. Cell Res. 182, 597–609.

    Article  PubMed  CAS  Google Scholar 

  • Monk, M. (1986) Methylation and the X chromosome. BioEssays 4, 204–208.

    Article  PubMed  CAS  Google Scholar 

  • Monk, M. (1988) Genomic imprinting. Genes Dev. 2, 921–925.

    Article  PubMed  CAS  Google Scholar 

  • Monk, M., Adams, R. L. P., and Rinaldi, A. (1991) Decrease in DNA methylase activity during preimplantation development in the mouse. Development 112, 189–192.

    PubMed  CAS  Google Scholar 

  • Monk, M., Boubelik, M., and Lehnert, S. (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382.

    PubMed  CAS  Google Scholar 

  • Moore, T., and Haig, D. (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7, 45–49.

    PubMed  CAS  Google Scholar 

  • Nicholls, R. D., Knoll, J. H. M., Butler, M. G., Karam, S., and Lalande, M. (1989) Genomic imprinting suggested by maternal heterodisomy in non-deletion Prader Willi syndrome. Nature 342, 281–285.

    Article  PubMed  CAS  Google Scholar 

  • Razin, A., and Riggs, A. D. (1980) DNA methylation and gene function. Science 210, 604–610.

    Article  PubMed  CAS  Google Scholar 

  • Reik, W. (1989) Genomic imprinting and genetic disorders in man. Trends Genet. 5, 331–336.

    Article  PubMed  CAS  Google Scholar 

  • Reik, W. (1992) Genomic imprinting, in: Transgenic Animals in Biology and Medicine, pp. 99–126. Eds F. Grosveld and G. Kollias. Academic Press.

    Google Scholar 

  • Reik, W., Collick, A., Norris, M. L., Barton, S. C, and Surani, M. A. (1987) Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328, 248–251.

    Article  PubMed  CAS  Google Scholar 

  • Reik, W., Howlett, S. K., and Surani, M. A. (1990) Imprinting by DNA methylation: from transgenes to endogeneous gene sequences. Development (Suppl.), 99–106.

    Google Scholar 

  • Richardson, B. J., Czuppon, A. B., and Sharman, G. B. (1971) Inheritance of glucoses-phosphate dehydrogenase variation in kangaroos. Nature New Biol. 230, 154–155.

    PubMed  CAS  Google Scholar 

  • Riggs, A. D. (1975) X chromosome inactivation, differentiation and DNA methylation. Cytogenet. Cell Genet. 14, 9–25.

    Article  PubMed  CAS  Google Scholar 

  • Sanford, J. P., Clark, H. J., Chapman, V. M., and Rossant, J. (1987) Differences in DNA methylation during oogenesis and spermatogenesis and their persistence during early embryogenesis in the mouse. Genes Dev. 1, 1039–2834.

    Article  PubMed  CAS  Google Scholar 

  • Sanford, J., Forrester, L., and Chapman, V. (1984) Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus. Nucl. Acids Res. 12, 2823–2834.

    Article  PubMed  CAS  Google Scholar 

  • Sapienza, C. (1989) Genomic imprinting and dominance modification. Ann. NY Acad. Sci. 564, 24–38.

    Article  PubMed  CAS  Google Scholar 

  • Sapienza, C. (1990) Sex-linked dosage-sensitive modifiers as imprinting genes. Development (Suppl.), 107–113.

    Google Scholar 

  • Sapienza, C. (1991) Genomic imprinting and carcinogenesis. Biochim. Biophys. Acta 1072, 51–61.

    PubMed  CAS  Google Scholar 

  • Sapienza, C., Paquette, J., Tran, T. H., and Peterson, A. (1989) Epigenetic and genetic factors affect transgene methylation imprinting. Development 107. 165–168.

    PubMed  CAS  Google Scholar 

  • Sapienza, C., Peterson, A. C., Rossant, J., and Balling, R. (1987) Degree of methylation of transgenes is dependent on gamete of origin. Nature 328, 251–254.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, H., Hamada, T., Ueda, T., Seki, R., Higashinakagawa, T., and Sakaki, Y. (1991) Inherited type of allelic methylation variations in a mouse chromosome region where an integrated transgene shows methylation imprinting. Development 111, 573–581.

    PubMed  CAS  Google Scholar 

  • Sasaki, H., Hamada, T., Ueda, T., Seki, R., Higashinakagawa, T., and Sakaki, Y. (1991) Inherited type of allelic methylation variations in a mouse chromosome region where an integrated transgene shows methylation imprinting. Development 111, 573–581.

    PubMed  CAS  Google Scholar 

  • Searle, A. G., and Beechey, C. V. (1978) Complementation studies with mouse translocations. Cytogenet. Cell Genet. 20, 282–303.

    Article  PubMed  CAS  Google Scholar 

  • Searle, A. G., and Beechey, C. V. (1985) Noncomplementation phenomena and their bearing on nondisjunctional effects, in: Aneuploidy, Aetiology and Mechanisms, pp. 363–376. Eds V. L. Dellarco, P. E. Voytek and A. Hollaender. Plenum, New York.

    Google Scholar 

  • Searle, A. G., Peters, J., Lyon, M. F., Hall, J. G., Evans, E. P., Edwards, J. H., and Buckle, V. J. (1989) Chromosome map of man and mouse. IV. Ann. Hum. Genet. 53, 89–140.

    Article  CAS  Google Scholar 

  • Sharman, G. B. (1971) Late replication in the paternally derived X chromosome of female kangaroo. Nature 230, 231–232.

    Article  PubMed  CAS  Google Scholar 

  • Singer-Sam, J., Grant, M., LeBon, J. M., Okuyama, K., Chapman, V., Monk, M., and Riggs, A. D. (1990) Use of a HpaII-polymerase chain reaction assay to study DNA methylation in the Pgk-1 CpG island of mouse embryos at the time of X-chromosome inactivation. Mol. Cell. Biol. 10, 4987–4989.

    PubMed  CAS  Google Scholar 

  • Solter, D. (1988) Differential imprinting and expression of maternal and paternal genomes. Annu. Rev. Genet. 22, 127–146.

    Article  PubMed  CAS  Google Scholar 

  • Surani, M. A. H. (1986) Evidences and consequences of differences between maternal and paternal genomes during embryogenesis in the mouse, in: Experimental Approaches to Mammalian Embryonic Development, pp. 401–436. Eds J. Rossant and R. A. Pederson. Cambridge University Press, Cambridge.

    Google Scholar 

  • Surani, M. A., Allen, N. D., Barton, S. C., Fundele, R., Howlett, S. K., Norris, M. L. Reik, W. (1990a) Developmental consequences of imprinting of parental chromosomes by DNA methylation. Phil. Trans. R. Soc. Lond. B 326, 313–327.

    Article  CAS  Google Scholar 

  • Surani, M. A., Kothary, R., Allen, N. D., Singh, P. B., Fundele, R., Ferguson-Smith, A. C., and Barton, S. C. (1990b) Genomic imprinting and development in the mouse. Develop-ment (Suppl.), 89–98.

    Google Scholar 

  • Surani, M. A., Reik, W., and Allen, N. D. (1988) Transgenes as molecular probes for genomic imprinting. Trends Genet. 4, 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Surani, M. A. H., Reik, W., Norris, M. L., and Barton, S. C. (1986) Influence of germline modifications of homologous chromosomes on mouse development. J. Embryol. Exp. Morphol. (Suppl.) 97, 123–136.

    Google Scholar 

  • Swain, J. L. Stewart, T. A., and Leder, P. (1987) Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell 50, 719–727.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, N., and Sasaki, M. (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes in the mouse. Nature 256, 640–642.

    Article  PubMed  CAS  Google Scholar 

  • Toniolo, D., D’Urso, M., Martini, G., Persico, M., Tufano, V., Battistuzzi, G., and Luzatoo, L. (1984) Specific methylation pattern at the 3’ end of the human housekeeping gene for glucose-6-phosphate dehydrogenase. EMBO J. 3, 1987–1995.

    PubMed  CAS  Google Scholar 

  • VandeBerg, J. L., Robinson, E. S., Samollow, P. B., and Johnston, P. G. (1987) X-linked gene expression and X-chromosome inactivation: marsupials, mouse and man compared. Isozymes: Curr. Topics Biol. Med. Res. 16, 225–253.

    Google Scholar 

  • West, J. D., Frels, W. I., Chapman, V. M., and Papaioannou, V. E. (1977) Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell 12, 873–882.

    Article  PubMed  CAS  Google Scholar 

  • Wigler, M. H. (1981) The inheritance of methylation patterns in vertebrates. Cell 24, 285–286.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, S. F., Dintzis, S., Toniolo, D., Persico, G., Lunnen, K. D., Axelman, J., and Migeon, B. R. (1984) Complete concordance between glucose-6-phosphate dehydrogenase activity and hypomethylation of 3’ CpG clusters: implications for X chromosome dosage compensation. Nucl. Acids Res. 12, 9333–9348.

    Article  PubMed  CAS  Google Scholar 

  • Yen, P. H., Patel, P., Chinault, A. C., Mohandas, T., and Shapilo, L. J. (1984) Differential methylation of hypoxanthine phosphoribosyltransferase genes on active and inactive human X chromosomes. Proc. Natl. Acad. Sci. USA 81, 1759–1763.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Sasaki, H., Allen, N.D., Azim Surani, M. (1993). DNA methylation and genomic imprinting in mammals. In: Jost, JP., Saluz, HP. (eds) DNA Methylation. EXS, vol 64. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9118-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9118-9_21

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9915-4

  • Online ISBN: 978-3-0348-9118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics