Skip to main content

KAM-Theory for Partial Differential Equations

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 120))

Abstract

The paper is devoted to nonlinear partial differential equations (PDEs) of a Hamiltonian form having a one-dimensional space variable x. The equations are close to integrable Hamiltonian equations, that is, close to linear PDEs or to one of the “theta-integrable” PDEs (Korteweg-de Vries equation, Sine-Gordon equation, etc.). We treat these equations as infinite-dimensional Hamiltonian systems (i.e., systems with a phase-space equal to an infinite-dimensional function space of x-dependent functions).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnold, Mathematical Methods in Classical Mechanics, Nauka, Moscow, 1974;

    Google Scholar 

  2. V.I. Arnold, Mathematical Methods in Classical Mechanics, Nauka, Moscow, 1978; English translation, Springer, 1978.

    Google Scholar 

  3. V.I. Arnold, Proof of a theorem of A.N. Kolmogorov on the conservation of quasiperiodic motions under a small change of the Hamiltonian function, Uspekhi Mat. Nauk 18(5) (1963), 13–40;

    Google Scholar 

  4. V.I. Arnold, Proof of a theorem of A.N. Kolmogorov on the conservation of quasiperiodic motions under a small change of the Hamiltonian function, English translation in: Russ. Math. Surv. 18(5) (1963), 9–36.

    Article  Google Scholar 

  5. V.I. Arnold, V.V. Kozlov, A.I. Neistadt, Mathematical Aspects of Classical and Celestial Mechanics, in: Encycl. of Mathem. Seien. 3 (1989), Springer.

    Google Scholar 

  6. F.A. Berezin, M.A. Shubin, The Schrödinger Equation, Kluwer Academic Publishers, Dordrecht, 1991.

    Google Scholar 

  7. R.F. Bikbaev, S.B. Kuksin, A periodic boundary value problem for the Sine-Gordon equation, small Hamiltonian perturbations of it, and KAM-stability of finite-gap tori, Algebra and Analysis 4(3) (1992), 1–31;

    MathSciNet  Google Scholar 

  8. R.F. Bikbaev, S.B. Kuksin, A periodic boundary value problem for the Sine-Gordon equation, small Hamiltonian perturbations of it, and KAM-stability of finite-gap tori, English translation in: St.-Petersburg Math. J. 4 (1993), 439–468.

    MathSciNet  Google Scholar 

  9. R.F. Bikbaev, S.B. Kuksin, On the parametrization of finite-gap solutions by frequency vector and wave-number vector and a theorem of I. Krichever, Lett. Math. Phys. 28 (1993), 115–122.

    Article  MathSciNet  MATH  Google Scholar 

  10. A.I. Bobenko, S.B. Kuksin, Finite-gap periodic solutions of the KdV equation are nondegenerate, Phis. Lett. A 161(3) (1991), 274–276.

    Article  MathSciNet  Google Scholar 

  11. A.I. Bobenko, S.B. Kuksin, The nonlinear Klein-Gordon equation on an interval as a perturbed Sine-Gordon equation, Comment. Math. Helv., to appear.

    Google Scholar 

  12. W. Craig, C.E. Wayne, Newton’s method and periodic solutions of nonlinear wave equation, Coram. Pure Appl. Math. 46 (1993), 1409–1498.

    Article  MathSciNet  MATH  Google Scholar 

  13. P.R. Chernoff, J.E. Marsden, Properties of infinite-dimensional Hamiltonian systems, Lecture Notes in Math. 425 (1974).

    Google Scholar 

  14. B.A. Dubrovin, V.F. Matveev, S.P. Novikov, Nonlinear equations of Korteweg-de Vries type, finite zone linear operators, and abelian varieties, Uspekhi Mat. Nauk 31(1), (1976), 55–136;

    MathSciNet  MATH  Google Scholar 

  15. B.A. Dubrovin, V.F. Matveev, S.P. Novikov, Nonlinear equations of Korteweg-de Vries type, finite zone linear operators, and abelian varieties, English translation in: Russ. Math. Surv. 31(1) (1976).

    Google Scholar 

  16. N. Ercolani, M.G. Forest, D. McLaughlin, Geometry of the Modulational Instability, Part 1, Local Analysis, preprint, University of Arizona, 1987.

    Google Scholar 

  17. N. Ercolani, M.G. Forest, D. McLaughlin, Geometry of the modulational instability, Part 3, Physica 43 D (1990), 349–384.

    Google Scholar 

  18. L.H. Eliasson, Perturbations of stable invariant tori, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 15 (4) (1988), 115–147.

    MathSciNet  MATH  Google Scholar 

  19. H. Federer, Geometric Measure Theory, Springer, (1969).

    MATH  Google Scholar 

  20. E. Fermi, J.R. Pasta, S.M. Ulam, Studies of Nonlinear Problems, in: Collected Works of E. Fermi vol. 2, Univ. Chicago Press, Chicago, 1965.

    Google Scholar 

  21. J. Fröhlich, T. Spencer, CE. Wayne, localization in disordered nonlinear dynamical systems, J. Stat. Phys. 42 (1986), 247–274.

    Article  MATH  Google Scholar 

  22. J. Garnet, E. Trubowitz, Gaps and bands on one dimensional Schrödinger operator II, Comment. Math. Helvetici G2 (1987), 18–37.

    Article  Google Scholar 

  23. S.M. Graff, On the continuation of hyperbolic invariant tori for Hamiltonian systems, J. Differ. Equations 15 (1974), 1–69.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Guillemin, A. Weinstein, Eigenvalues associated with a closed geodesic, Bull. Amer. Math. Soc. 82 (1976), 92–94.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Herman, Inégalités a priori pour des Tores Lagrangiens Invariants par des Difféomorphismes Symplectiques, Publ. Math. IHES 70 (1989).

    Google Scholar 

  26. B. Helffer, D. Robert, Asymptotique des Niveaux d’Energie pour des Hamiltoniens à un Degré de Liberté, Duke Math. J. 49 (1982), 853–868.

    Article  MathSciNet  MATH  Google Scholar 

  27. S.B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, Funkts. Anal. Prilozh. 21(3) (1987), 22–37;

    MathSciNet  MATH  Google Scholar 

  28. S.B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, English translation in: Funct. Anal. Appl. 21 (1987), 192–205.

    Article  MathSciNet  MATH  Google Scholar 

  29. S.B. Kuksin, Reducible variational equations and the perturbation of invariant tori of Hamiltonian systems, Matem. Zametki 45(5) (1989), 38–49;

    MathSciNet  MATH  Google Scholar 

  30. S.B. Kuksin, Reducible variational equations and the perturbation of invariant tori of Hamiltonian systems, English translation in: Mathematical Notes 45(5) (1989), 373–381.

    MathSciNet  MATH  Google Scholar 

  31. S.B. Kuksin, An averaging theorem for distributed conservative systems and its applications to the von Karman equations, Prikl. Matem. Mekhan. 53(2) (1988), 196–205;

    MathSciNet  Google Scholar 

  32. S.B. Kuksin, An averaging theorem for distributed conservative systems and its applications to the von Karman equations, English translation in: P.M.M. USSR 53(2) (1989), 150–157.

    MathSciNet  MATH  Google Scholar 

  33. S.B. Kuksin, Perturbation theory for quasiperiodic solutions of infinite-dimensional Hamiltonian systems, and its applications to the Korteweg-de Vries equation, Matem. Sbornik 136 (1978):3

    Google Scholar 

  34. S.B. Kuksin, Perturbation theory for quasiperiodic solutions of infinite-dimensional Hamiltonian systems, and its applications to the Korteweg-de Vries equation, Matem. Sbornik 136 (1988):3

    Google Scholar 

  35. S.B. Kuksin, Perturbation theory for quasiperiodic solutions of infinite-dimensional Hamiltonian systems, and its applications to the Korteweg-de Vries equation, English translation in: Math. USSR Sbornik 64 (1989), 397–413.

    Article  MathSciNet  MATH  Google Scholar 

  36. S.B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Math. 1556 (1993), Springer.

    Google Scholar 

  37. S.B. Kuksin, Time-Quasiperiodic Solutions of Hamiltonian PDE’s, in preparation.

    Google Scholar 

  38. T. Kato, Quasi-linear equations of evolutions, with applications to partial differential equations, Lecture Notes Math. 448 (1975), 25–70.

    Article  Google Scholar 

  39. A.N. Kolmogorov, On the conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad Nauk SSSR 98 (1956), 525–530;

    Google Scholar 

  40. A.N. Kolmogorov, On the conservation of conditionally periodic motions for a small change in Hamilton’s function, English translation in: Lecture Notes in Physics 93 (1979), 51–56.

    Article  MathSciNet  Google Scholar 

  41. S.B. Kuksin, J. Pöschel, Invariant cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, preprint of the ETH Zürich, 1994.

    Google Scholar 

  42. I.M. Krichever, Perturbation theory in periodic problems for two-dimensional integrable systems, Sov. Sci. Rev. C. Math. Phys. 9 (1991), 1–101.

    Google Scholar 

  43. V.F. Lazutkin, KAM-Theory and Semidassical Approximation to Eigenfunctions, Springer (1993).

    Google Scholar 

  44. A.J. Lichtenberg, M.A. Liebermann, Regular and Stochastic Motions, Springer (1983).

    Google Scholar 

  45. V.A. Marčenko, Sturm-Liouville Operators and Applications, Naukova Dumka, Kiev (1977); English translation, Birkhäuser, Basel (1986).

    Google Scholar 

  46. V.K. Melnikov, On some cases of conservation of conditionally periodic motions under a small change of the Hamiltonian function, Dokl. Akad. Nauk SSSR 165(6) (1965), 1245–1248;

    MathSciNet  Google Scholar 

  47. V.K. Melnikov, On some cases of conservation of conditionally periodic motions under a small change of the Hamiltonian function, English translation in: Sov. Math. Dokl. 6 (1965), 1592–1596.

    Google Scholar 

  48. V.K. Melnikov, A family of conditionally periodic solutions of a Hamiltonian system, Dokl. Akad. Nauk SSSR 81(3) (1968), 546–549;

    Google Scholar 

  49. V.K. Melnikov, A family of conditionally periodic solutions of a Hamiltonian system English translation in: Sov. Math. Dokl. 9 (1968), 882–886.

    Google Scholar 

  50. J. Moser, Stable and Random Motions in Dynamical Systems, Princeton Univ. Press, Princeton (1973).

    MATH  Google Scholar 

  51. J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann. 169 (1967), 136–176.

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286–294.

    Article  MathSciNet  MATH  Google Scholar 

  53. H.P. McKean, E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), 143–226.

    Article  MathSciNet  MATH  Google Scholar 

  54. S.P. Novikov, S.V. Manakov, L.P. Pitaevskij, V.E. Zakharov, Theory of Solitons, Nauka, Moscow (1980);

    MATH  Google Scholar 

  55. S.P. Novikov, S.V. Manakov, L.P. Pitaevskij, V.E. Zakharov, Theory of Solitons, English translation, Plenum Press, New York (1984).

    MATH  Google Scholar 

  56. J. Pöschel, On elliptic lower dimensional tori in Hamiltonian systems, Math. Z. 202 (1989), 559–608.

    Article  MathSciNet  MATH  Google Scholar 

  57. J. Pöschel, Small divisors with spatial structure in infinite dimensional Hamiltonian systems, Commun. Math. Phys. 127 (1990), 351–393.

    Article  MATH  Google Scholar 

  58. J. Pöschel, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math. 35 (1982), 653–695.

    Article  MathSciNet  MATH  Google Scholar 

  59. J.V. Ralston, Approximate eigenfunctions of the Laplacian, J. Differential Geometry 12 (1977), 87–100.

    MathSciNet  MATH  Google Scholar 

  60. M. Reed, B. Simon, Methods of Modern Mathematical Physics vols. 1, 2, Academic Press (1980).

    Google Scholar 

  61. C.L. Siegel, J. Moser, Lectures on Celestial Mechanics, Springer (1971).

    MATH  Google Scholar 

  62. D. Salamon, E. Zehnder, KAM theory in configuration space, Comment. Math. Helv. 64 (1989), 84–132.

    Article  MathSciNet  MATH  Google Scholar 

  63. D.V. Treshchev, The mechanism of destruction of resonant tori of Hamiltonian systems, Matem. Sbornik 140 (1990);

    Google Scholar 

  64. D.V. Treshchev, The mechanism of destruction of resonant tori of Hamiltonian systems, English translation in: Math. USSR Sbornik 68 (1991), 181–213.

    Article  MathSciNet  Google Scholar 

  65. M. Vittot, J. Bellissard, Invariant tori for an infinite lattice of coupled classical rotators, preprint CPT-Marseille, 1985.

    Google Scholar 

  66. C.E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys. 127 (1990), 479–528.

    Article  MathSciNet  MATH  Google Scholar 

  67. C.E. Wayne, The KAM theory of systems with short range interactions, 1 and 2, Commun. Math. Phys. 96 (1984), 311–329;

    Article  MathSciNet  MATH  Google Scholar 

  68. C.E. Wayne, The KAM theory of systems with short range interactions, 1 and 2, Commun. Math. Phys. 96 (1984), 331–344.

    Article  MathSciNet  MATH  Google Scholar 

  69. E. Zehnder, Generalized implicit function theorem with applications to some small divisor problems, I and II, Commun. Pure Appl. Math. 28 (1975), 91–140;

    Article  MathSciNet  MATH  Google Scholar 

  70. E. Zehnder, Generalized implicit function theorem with applications to some small divisor problems, I and II, Commun. Pure Appl. Math. 29 (1976), 49–111.

    Article  MathSciNet  MATH  Google Scholar 

  71. V.E. Zakharov, M.F. Ivanov, L.N. Shur, On the abnormally slow stochastisation in some two-dimensional field theory models, Pis’ma Zh. Eksp. Teor. Fiz. 30(1) (1979), 39–44; English translation in: JETP Letters 30(1) (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag

About this chapter

Cite this chapter

Kuksin, S.B. (1994). KAM-Theory for Partial Differential Equations. In: Joseph, A., Mignot, F., Murat, F., Prum, B., Rentschler, R. (eds) First European Congress of Mathematics Paris, July 6–10, 1992. Progress in Mathematics, vol 120. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9112-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9112-7_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9912-3

  • Online ISBN: 978-3-0348-9112-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics