Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 120))

Abstract

We shall describe a program here relating Feynman diagrams, topology of manifolds, homotopical algebra, non-commutative geometry and several kinds of “topological physics.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Axelrod and I. M. Singer, Chern-Simons Perturbation Theory, M.I.T. preprint, October, 1991.

    Google Scholar 

  2. D. Bar-Natan, On the Vassiliev Knot Invariants, Harvard preprint, August, 1992.

    Google Scholar 

  3. D. Bessis, C. Itzykson, and J.-B. Zuber, Quantum field theory techniques in graphical enumeration, Adv. Appl. Math. 1 (1980), 109–157.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), 91–119.

    Article  MathSciNet  MATH  Google Scholar 

  5. V. G. Drinfel’d, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), 1419–1457.

    MathSciNet  MATH  Google Scholar 

  6. D. Freed and R. Gompf, Computer tests of Witten’s Chern-Simons theory against the theory of three-manifolds, Phys. Rev. Letters 66 (10), (1991), 1255–1258.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York and London, 1986.

    MATH  Google Scholar 

  8. W. Fulton and R. MacPherson, A Compactification of Configuration Spaces, preprint, 1992.

    Google Scholar 

  9. S. Garoufalidis, Relations Among 3-Manifold Invariants, thesis, University of Chicago, 1992.

    Google Scholar 

  10. E. Guadagnini, M. Martellini, and M. Mintchev, Perturbative Aspect of the Chern-Simons Field Theory, Phys. Lett. B227 (1989), 111.

    MathSciNet  Google Scholar 

  11. V. K. A. M. Gugenheim and J. Stasheff, On perturbations and A-structures, Bull Soc. Math. Belg. 38 (1986), 237–246.

    MathSciNet  MATH  Google Scholar 

  12. J. Harer, The cohomology of the moduli space of curves, Lecture Notes in Math. 1337, Springer-Verlag, 138–221.

    Google Scholar 

  13. J. Harer and D. Zagier, The Euler charcteristic of the moduli space of curves, Invent. Math. 85 (1986), 457–485.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. C. Jeffrey, Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semiclassucal approximation, Coram. Math. Phys. 147 (1992), 563–604.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Kontsevich, Intersection theory on the moduli space of curves and the matrix airy function, Commun. Math. Phys. 147 (1992), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Kontsevich, Lectures at Harvard University, 1991–1992.

    Google Scholar 

  17. M. Kontsevich, Formal (Non)-Commutative Symplectic Geometry, in: The Gelfand Mathematical Seminars, 1990–1992, Birkhäuser, 1993, 173–188.

    Chapter  Google Scholar 

  18. M. Kontsevich, Vassiliev’s knot invariants, Adv. Soviet Math. 16 (2) (1993), 137–150.

    MathSciNet  Google Scholar 

  19. R. C. Penner, The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys. 113 (1987), 299–339.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. C. Penner, Perturbative series and the moduli space of Riemann surfaces, J. Diff. Geom. 27 (1988), 35–53.

    MathSciNet  MATH  Google Scholar 

  21. N. Reshetikhin and V. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys. 127(1990), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  22. N. Reshetikhin and V. Turaev, Invariants of 3-manifolds via Link polynomials and quantum groups, Invent. Math. 103 (1991), 547–597.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Stasheff, An Almost Groupoid Structure for the Space of (Open) Strings and Implications for String Field Theory, in: Advances in Homotopy Theory (Cortona, June 1988), LMS Lecture Notes Series 139 (1989), 165–172.

    Google Scholar 

  24. J. Stasheff, On the homotopy asssociativity of H-spaces I, II, Trans. AMS 108 (1963), 275–312.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Strebel, Quadratic differentials, Springer-Verlag, Heidelberg, 1984.

    MATH  Google Scholar 

  26. C. Taubes, private communication.

    Google Scholar 

  27. V. A. Vassiliev, Cohomology of knot spaces, in: Theory of Singularities and its applications, V.I. Arnold (ed.), Advances in Soviet Mathematics, AMS 1, 1990, 23–69.

    Google Scholar 

  28. V. A. Vassiliev, Complements to Discriminants of Smooth Maps: Topology and Applications, Amer. Math. Soc. Press, 1992.

    Google Scholar 

  29. E. Witten, Two dimensional gravity and intersection theory on moduli space, Surveys in Diff. Geom. 1 (1991), 243–310.

    MathSciNet  Google Scholar 

  30. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 117 (1988), 353–386.

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Witten, Chern-Simons Gauge Theory as a String Theory, preprint, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag

About this chapter

Cite this chapter

Kontsevich, M. (1994). Feynman Diagrams and Low-Dimensional Topology. In: Joseph, A., Mignot, F., Murat, F., Prum, B., Rentschler, R. (eds) First European Congress of Mathematics Paris, July 6–10, 1992. Progress in Mathematics, vol 120. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9112-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9112-7_5

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9912-3

  • Online ISBN: 978-3-0348-9112-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics