Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 120))

Abstract

We will here consider two classes of groups of homeomorphisms of the com-pactified n-dimensional euclidean space R n = R n∪{∞}, somehow generalizing various aspects of the behaviour of the classical Fuchsian and Kleinian groups whose elements are conformai homeomorphisms of R2. The first of the generalizations is the class of quasiconformal groups relaxing the con-formality condition for elements of Fuchsian and Kleinian groups. The second class of groups, convergence groups, generalizes topological convergence properties of the classical conformai groups. Especially this latter class of groups has some interesting applications as it can be applied to obtain proofs of the Nielsen realization problem and of the Seifert conjecture to be discussed in the final section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. V. Ahlfors, Möbius transformations in several dimension, Lecture notes at the university of Minnesota, 1981.

    Google Scholar 

  2. L. V. Ahlfors and L. Bers, Riemann’s mapping theorem for variable metrics, Ann. Math. 72 (1960), 385–404.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Casson and D. Jungreis, Seifert fibred spaces and convergence groups, to appear.

    Google Scholar 

  4. D. Gabai, Convergence groups are Fuchsian groups Ann. Math. 136 (1992), 447–510, announced in Bull. Amer. Math. Soc. 25 (1991), 395–402.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. W. Gehring and G. J. Martin, Discrete quasiconformal groups I, Proc. London Math. Soc. (3) 55 (1987), 351–358.

    MathSciNet  Google Scholar 

  6. A. Hinkkanen, Uniformly quasisymmetric groups, Proc. London Math. Soc. (3) 51 (1985), 318–338.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Hinkkanen, The structure of certain quasisymmetric groups, Memoirs Am. Math. Soc. 83 No 422 (1990).

    Google Scholar 

  8. A. Hinkkanen, Abelian and nondiscrete convergence groups on the circle, Trans. Am. Math. Soc. 318 (1990), 87–121.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. P. Kerckhoff, The Nielsen realization problem, Ann. Math. 117 (1983), 235–265.

    Article  MathSciNet  MATH  Google Scholar 

  10. O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag (1973).

    MATH  Google Scholar 

  11. G. J. Martin and P. Tukia, Convergence groups with an invariant component pair, Amer. J. Math. 114 (1992), 1049–1077.

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Mayer, Cyclic parabolic quasiconformal groups that are not the quasiconformal conjugates of Möbius groups, Ann. Acad. Sci. Fenn. Ser. A I 19 (1993), 147–154.

    Google Scholar 

  13. G. Mess, The Seifert conjecture and groups which are coarse quasiisometric to planes, J. Amer. Math. Soc., to appear.

    Google Scholar 

  14. J. Nielsen, Abbildungsklassen endlicher Ordnung, Acta Math. 75 (1942), 23–115.

    Article  MATH  Google Scholar 

  15. P. Scott, There are no fake Seifert fibred spaces with infinite π1, Ann. Math. (2) 117 (1983), 35–70.

    Article  MATH  Google Scholar 

  16. D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, in: Riemann surfaces and related topics, proc. of the 1978 Stony Brook conference, I. Kra and B. Maskit (eds.), Annals of Math. Studies 97, Princeton Univ. Press (1981), 465–496.

    Google Scholar 

  17. P. Tukia, On two-dimensional quasiconformal groups, Ann. Acad. Sci. Fenn. Ser. AI 5 (1980), 73–78.

    MathSciNet  MATH  Google Scholar 

  18. P. Tukia, A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn. Ser. AI 6 (1980), 149–160.

    MathSciNet  Google Scholar 

  19. P. Tukia, On quasiconformal groups, J. Anal. Math. 46 (1986), 318–346.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Tukia, Homeomorphic conjugates of Fuchsian groups, J. reine angew. Math. 391 (1988), 1–54.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Tukia, Homeomorphic conjugates of Fuchsian groups, An outline, in: Complex Analysis, Joensuu 1987 I. Laine, S. Rickman and T. Sorvali (eds.), Lecture Notes in Mathematics 1351, Springer-Verlag (1988), 344–351.

    Chapter  Google Scholar 

  22. J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics 229, Springer-Verlag (1971).

    Google Scholar 

  23. H. Zieschang, Finite groups of mappings classes of surfaces, Lecture Notes in Mathematics 875, Springer-Verlag (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag

About this chapter

Cite this chapter

Tukia, P. (1994). Generalizations of Fuchsian and Kleinian Groups. In: Joseph, A., Mignot, F., Murat, F., Prum, B., Rentschler, R. (eds) First European Congress of Mathematics Paris, July 6–10, 1992. Progress in Mathematics, vol 120. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9112-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9112-7_19

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9912-3

  • Online ISBN: 978-3-0348-9112-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics