Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 120))

Abstract

In this survey we shall discuss the relation between algebra and complexity by looking at a ubiquitous computational problem: Matrix multiplication. Our point of view will be asymptotic with regard to the size of the matrices considered. For simplicity we will work over the field of complex numbers, although the main results covered in this paper hold over fields of any characteristic, algebraically closed or not. Once the ground field is fixed we may define the so-called exponent ω of matrix multiplication, which controls the computational complexity of multiplying large matrices:

$$ \omega : = \inf \left\{ {\tau :L\left( {\left\langle {h,h,h} \right\rangle } \right) = O\left( {{h^\tau }} \right)} \right\} $$
(1)

Here 〈h,h,h〉 stands for the multiplication map of matrices of order h and L(〈h,h,h〉) denotes its complexity, i.e., the minimal number of arithmetical operations sufficient to compute the product of two generic matrices (by straight line algorithms). Thus ω is the smallest number  τ, “smallest” in the sense of infimum, such that matrices of sufficiently high order h may be multiplied by an algorithm using only h τ arithmetic operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Baur and V. Strassen, The complexity of partial derivatives, Theor. Computer Science 22 (1982), 317–330.

    Article  MathSciNet  Google Scholar 

  2. E. Becker and N. Schwartz, Zum Darstellungssatz von Kadison-Dubois, Archiv Math. 40 (1983), 421–428.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Bini, Relations between EC-algorithms and APA-algorithms, applications, Nota interna B 79 (8), Pisa (1979).

    Google Scholar 

    Google Scholar 

  4. D. Bini, M. Capovani, G. Lotti and F. Romani, O(n 2.7799) complexity for matrix multiplication, Inf. Proc. Letters 8 (1979), 234–235.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Bürgisser, Doctoral thesis, Universität Konstanz (1990).

    Google Scholar 

  6. D. Coppersmith, How not to multiply matrices, preprint, IBM Research, T. J. Watson Research Center, Yorktown Heights, NY 10598 (1988).

    Google Scholar 

  7. D. Coppersmith and S. Winograd, On the asymptotic complexity of matrix multiplication, SIAM J. Comp. 11 (1982), 472–492.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Coppersmith and S. Winograd, Matrix Multiplication via arithmetic progressions, J. Symbolic Comput. 9 (3) (1990), 251–280.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. A. Gartenberg, Fast rectangular matrix multiplication, PhD thesis, Los Angeles (1985).

    Google Scholar 

  10. H. F. de Groote, Lectures on the complexity of bilinear problems, Lecture Notes in Comp. Science 245, Berlin-Heidelberg-New York (1987).

    MATH  Google Scholar 

  11. D. Hilbert, Über die vollen Invariantensysteme, Math. Ann. 42 (1893), 313–373.

    Article  MathSciNet  Google Scholar 

  12. J. E. Hopcroft and J. Musinski, Duality applied to the complexity of matrix multiplications and other bilinear forms, SIAM J. Comp. 2 (1973), 159–173.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. V. Kadison, A representation theory for commutative topological algebra, Mem. Amer. Math. Soc. 7 (1951).

    Google Scholar 

  14. W. Keller-Gehrig, Fast algorithms for the characteristic polynomial, Theor. Comp. Sci. 36 (1985), 309–317.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Kraft, Geometric methods in representation theory, in: Representations of Algebras, Workshop Proc., Puebla, Mexico 1980, Lecture Notes in Math.944(1982), Heidelberg, New York.

    Google Scholar 

  16. H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik, Braunschweig (1984).

    Google Scholar 

  17. V. Ya. Pan, Strassen’s algorithm is not optimal, Proc. 19th IEEE Symposium on Foundations of Computer Science, Ann Arbor, Mich. (1978), 166–176.

    Google Scholar 

  18. V. Ya. Pan, New fast algorithms for matrix operations, SIAM J. Comput. 9 (1980), 321–342.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Romani, Some properties of disjoint sums of tensors related to matrix multiplication, SIAM J. Comput. 11 (1982), 263–267.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Schönhage, Unitäre Transformationen großer Matrizen, Num. Math. 20 (1973), 409–417.

    Article  MATH  Google Scholar 

  21. A. Schönhage, Partial and total matrix multiplication, SIAM J. Comp 10 (1981), 434–455.

    Article  MATH  Google Scholar 

  22. M. H. Stone, A general theory of spectra I, Proc. N.A.S. 26 (1940), 280–283.

    Article  Google Scholar 

  23. J. Stoss, The complexity of evaluating interpolation polynomials, Theoret. Comput. Sci. 41 (1985), 319–323.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Strassen, Gaussian Elimination is not optimal, Num. Math. 13 (1969), 354–356.

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Strassen, Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoemzienten, Num. Math. 20 (3) (1973), 238–251.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Strassen, Vermeidung von Divisionen, J. reine angew. Math. 264 (1973), 184–202.

    MathSciNet  MATH  Google Scholar 

  27. V. Strassen, Relative bilinear complexity and matrix multiplication, J. reine angew. Math. 375/376 (1987), 406–443.

    Article  MathSciNet  Google Scholar 

  28. V. Strassen, The asymptotic spectrum of tensors, J. reine angew. Math. 384 (1988), 102–152.

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Strassen, Degeneration and complexity of bilinear maps: Some asymptotic spectra, J. reine angew. Math. 413 (1991), 127–180.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag

About this chapter

Cite this chapter

Strassen, V. (1994). Algebra and Complexity. In: Joseph, A., Mignot, F., Murat, F., Prum, B., Rentschler, R. (eds) First European Congress of Mathematics Paris, July 6–10, 1992. Progress in Mathematics, vol 120. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9112-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9112-7_18

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9912-3

  • Online ISBN: 978-3-0348-9112-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics