Skip to main content

Geometric Quantization and Equivariant Cohomology

  • Chapter
First European Congress of Mathematics

Part of the book series: Progress in Mathematics ((PM,volume 3))

Abstract

Let G be a real Lie group acting on a C even dimensional oriented manifold M. In many cases it is possible to associate to a G-equivariant Hermitian vector bundle ε over M, equipped with a G-invariant Hermitian connection A, a canonical virtual unitary representation Q(M, ε, A) of G in a virtual Hilbert space H(M, ε, A). The space H(M, ε, A) will be referred to as the quantized space of (M, ε, A). The meaning of canonical is the following. Although the geometric model for the quantized space H(M, ε, A) may be elusive, we can give a canonical character formula for Q(M, ε, A): there exists an admissible bouquet of equivariant cohomology classes bch(ε, A) on M such that

$$Tr\,\left( {Q\left( {M,\,\mathcal{E},\,\mathbb{A}} \right)} \right)\, = \,{i^{ - \frac{{\dim M}}{2}}}\,\int_b {bch\left( {\mathcal{E},\mathbb{A}} \right)} $$
((F):)

as an equality of generalized functions on the group G. The notion of admissible bouquet and the notion of integration ∫b of such bouquets will be described in this article. The bouquet bch(ε, A) will be called the bouquet of Chern characters of the bundle ε with connection A (in fact, we will have to modify the notion of G-equivariant vector bundle to the notion of G-equivariant quantum bundle in order for bch(ε, A) to be an admissible bouquet).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. F. Atiyah, R. Bott, A Lefschetz fixed-point formula for elliptic complexes: I, Ann. of Math. 86 (1967), 374–407.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. F. Atiyah, R. Bott, A Lefschetz fixed-point formula for elliptic complexes: II, Ann. of Math. 88 (1968), 451–491.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. F. Atiyah, F. Hirzebruch, Vector bundles and homogeneous spaces, Amer. Math. Symp. III (1961), 7–38.

    Google Scholar 

  4. M. F. Atiyah, G. B. Segal, The index of elliptic operators II, Ann. Math. 87 (1968), 531–545.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. F. Atiyah, I. M. Singer, The index of elliptic operators I, Ann. Math. 87 (1968), 484–530.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. F. Atiyah, I. M. Singer, The index of elliptic operators III, Ann. Math. 87 (1968), 546–604.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. F. Atiyah, I. M. Singer, The index of elliptic operators IV, Ann. Math. 93 (1971), 139–141.

    Article  MathSciNet  Google Scholar 

  8. L. Auslander et B. Kostant, Polarization and unitary representations of solvable Lie groups, Inventiones Math. 14 (1971), 255–354.

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Berline, E. Getzler, M. Vergne, Heat kernels and Dirac operators, Springer-Verlag, Berlin-Heidelberg-New York, 1991.

    Google Scholar 

  10. N. Berline, M. Vergne, Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris 295 (1982), 539–541.

    MathSciNet  MATH  Google Scholar 

  11. N. Berline, M. Vergne, Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. Journal 50 (1983), 539–549.

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Berline, M. Vergne, The equivariant index and Kirillov character formula, Amer. J. of Math 107 (1985), 1159–1190.

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Berline, M. Vergne, Open problems in representations theory of Lie groups, Proceedings of the Eighteenth International Symposium, Division of Mathematics, The Taniguchi Foundation, 1986 (1986), 34–36.

    Google Scholar 

  14. N. Berline, M. Vergne, Indice équi variant et caractère d’une représentation induite, in: D-modules and Microlocal Geometry, Walter de Gruyter and Co., Berlin, New York, 1992.

    Google Scholar 

  15. J.-M. Bismut, The infinitesimal Lefschetz formulas: a heat equation proof, J. of Functional Anal 62 (1985), 435–457.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Block, E. Getzler. Equivariant cyclic homology and equivariant differential forms, Annales de l’Ec. Norm. Sup., to appear.

    Google Scholar 

  17. R. Bott, C. Taubes, On the rigidity theorems of Witt en, J. of the Amer. Math. Soc. 2 (1989), 137–186.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Bouaziz, Sur les caractères des groupes de Lie réductifs non connexes, J. of Functional Analysis 70 (1987), 1–79.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Cartan, Notions d’algèbre différentielle; applications aux groupes de Lie et aux variétés où opère un groupe de Lie. in: Colloque de Topologie, C. B. R. M., Bruxelles (1950), 15–27.

    Google Scholar 

  20. H. Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, in: Colloque de Topologie, C. B. R. M., Bruxelles (1950), 57–71.

    Google Scholar 

  21. M. Duflo, Caractères des groupes et des algèbres de Lie résolubles, Ann. Sci. Ec. Norm, Sup. 3 (1970), 23–74.

    MathSciNet  MATH  Google Scholar 

  22. M. Duflo, Sur les extensions des représentations irréductibles des groupes de Lie nilpotents. Ann. Sci. Ec. Norm. Sup. 5 (1972), 71–120.

    MathSciNet  MATH  Google Scholar 

  23. M. Duflo, Construction de représentations unitaires d’un groupe de Lie, in: Harmonic analysis and group representations, C.I.M.E 1980, Liguori, Napoli (1982).

    Google Scholar 

  24. M. Duflo, Sur le caractère de la représentation de Weil sur les corps finis, preprint, 1988.

    Google Scholar 

  25. M. Duflo, G. Heckman, M. Vergne, Projection d’orbites, formule de Kirillov et formule de Blattner, Mem, Soc. Math. Fr. 15 (1984), 65–128.

    MathSciNet  MATH  Google Scholar 

  26. M. Duflo, M. Vergne, Une propriété de la représentation coadjointe d’une algèbre de Lie, C. R, Acad. Sc. Paris 268 (1969), 583–585.

    MathSciNet  MATH  Google Scholar 

  27. M. Duflo, M. Vergne, Sur le foncteur de Zuckerman, C. R. Acad. Sc. Paris 304 (1987), 467–469.

    MathSciNet  MATH  Google Scholar 

  28. M. Duflo, M. Vergne, Cohomologie équivariante et descente, Astérisque 215, 1993.

    Google Scholar 

  29. M. Duflo, M. Vergne, Continuation cohérente, in: Lie Theory and Geometry: In honor of Bertram Kostant, PM 123, Birkhäuser Boston, 1994.

    Google Scholar 

  30. E. Getzler, Pseudodifferential operators on supermanifolds and the index theorem, Comm. Math. Phys. 92 (1983), 163–178.

    Article  MathSciNet  MATH  Google Scholar 

  31. Harish-Chandra, Discrete series for semi-simple Lie groups I, Acta Math. 113 (1965), 241–318.

    Article  MathSciNet  MATH  Google Scholar 

  32. Harish-Chandra, Discrete series for semi-simple Lie groups II, Acta Math. 116 (1966), 1–111.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Howe, The oscillator semi-group, Proceedings of Symposia in Pure Maths. Amer. Math. Soc. Providence, R.I. 48 (1988), 66–132.

    Google Scholar 

  34. M. Karoubi, Algèbres de Clifford et K-théorie, Ann. Sci. Ec. Norm. Sup. 1 (1968), 161–270.

    MathSciNet  MATH  Google Scholar 

  35. M.S. Khalgui, Caractères des groupes de Lie, J. of Functional Analysis 47 (1982), 64–77.

    Article  MathSciNet  MATH  Google Scholar 

  36. A.A. Kirillov, Représentations unitaires des groupes de Lie nilpotents, Uspehi Mat. Nauk. 17 (1962), 57–110.

    MathSciNet  Google Scholar 

  37. A.A. Kirillov, Characters of unitary representations of Lie groups, Func. Analysis and Applic. 2 (1967), 40–55.

    MathSciNet  Google Scholar 

  38. A.A. Kirillov, Elements of the theory of representations, Grundlehren der mathematische Wissenschaften 220, Springer Verlag, 1976.

    Google Scholar 

  39. B. Kostant, Quantization and unitary representations, in: Modern analysis and applications, Lecture Notes in Mathematics 39 (1970), 87–207.

    Article  MathSciNet  Google Scholar 

  40. R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  41. L. Pukanzsky, Unitary representations of solvable Lie groups, Ann. Sci. Ec. Norm. Sup. 4 (1971), 457–608.

    Google Scholar 

  42. J. H. Rawnsley, P. L. Robinson, The metaplectic representation, Mp c structures and geometric quantization, Memoirs of the Amer. Math. Soc., Number 410, Providence, 1989.

    Google Scholar 

  43. W. Rossmann, Kirillov’s character formula for reductive groups, Inventiones Math. 48 (1978), 207–220.

    Article  MathSciNet  MATH  Google Scholar 

  44. W. Schmid, L 2-cohomology and the discrete series, Ann. Math. 103 (1976), 375–394.

    Article  Google Scholar 

  45. J.M. Souriau, Structure des systèmes dynamiques, Dunod, Paris (1991).

    Google Scholar 

  46. P. Torasso, Sur le caractère de la représentation de Shale-Weil de Mp(n,ℝ) et Sp(n,ℂ), Math. Annalen 252 (1980), 53–86.

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Vergne, Formule de Kirillov et indice de l’opérateur de Dirac, in: Proceedings of the International Congress of Mathematicians, 1983, Warsaw, PWN-Polish Scientific Publishers, North Holland, Amsterdam, New York, Oxford, 1984.

    Google Scholar 

  48. M. Vergne, Sur l’indice des opérateurs transversalement elliptiques, C. R. Acad. Sci. Paris 310 (1990), 329–332.

    MathSciNet  MATH  Google Scholar 

  49. D.A. Vogan, Representations of real reductive Lie groups, Birkhäuser, Boston, 1981.

    Google Scholar 

  50. N. R. Wallach, Real reductive groups I, Academic Press, New York, 1988.

    MATH  Google Scholar 

  51. E. Witten, Elliptic genera and quantum field theory, Comm. Math. Phys. 109 (1987), 525–536.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag

About this chapter

Cite this chapter

Vergne, M. (1994). Geometric Quantization and Equivariant Cohomology. In: Joseph, A., Mignot, F., Murat, F., Prum, B., Rentschler, R. (eds) First European Congress of Mathematics . Progress in Mathematics, vol 3. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9110-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9110-3_8

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9911-6

  • Online ISBN: 978-3-0348-9110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics