Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 3))

Abstract

Our starting point is a “random cloud” of points in the d-dimensional space ℝd, d ≥ 1, that is a locally finite possibly empty collection of points in ℝd. Each point of the cloud is the center of a closed ball of radius a > 0. These random, possibly overlapping configurations will play the role of random obstacles. A fairly natural choice of probability governing the randomness of the cloud is the Poisson law with constant intensity v > 0, denoted by ℙ. Independence and translation invariance are built into ℙ: indeed if A 1,…,A k are pairwise disjoint Borel subsets of ℝd the random numbers of points N(A 1),…N(A k ) which respectively fall in A 1,…, A k are independent variables with Poisson distribution

$$\mathbb{P}\,\left[ {N\left( {{A_i}} \right)\, = \,\ell } \right]\, = \,\exp \left\{ { - v\left| {{A_i}} \right|} \right\}\,\frac{{{{\left ( {v\left| {{A_i}} \right|} \right)}^\ell }}}{{\ell !}},\,\ell \, \geqslant \,0\,,$$
((1.1))

if |·| stands for the usual Lebesgue volume on ℝd. We are first going to describe two model problems connected with this random medium, and later we shall see that these two problems turn out to be related.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variations, Encyclopedia of Mathematics and its Applications 27, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  2. E. Bolthausen, On the volume of the Wiener sausage Ann. Prob. 18 (4), (1990), 1576–1582.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Bolthausen, Localization of a two dimensional random walk with an attractive path interaction, Ann. Probab., to appear.

    Google Scholar 

  4. R. Carmona, J. LaCroix, Spectral theory of random Schröding er operators, Probability and its Applications, Birkhäuser, Basel, 1991.

    Google Scholar 

  5. D. Cioranescu, F. Murat, Un terme étrange venu d’ailleurs, in: Nonlinear P.D.E. and their Applications, Seminar, Collège de France, vol. II, M. Brézis, J.L. Lions (eds.), R.N.M. 60, Pitman, 98–138 (1982); vol. III, R.N.M. 70, Pitman, 154–178 (1982).

    Google Scholar 

  6. F. Den Hollander, G.H. Weiss, Aspects of trapping in transport processes, Some problems in statistical Physics, SIAM, Philadelphia, to appear.

    Google Scholar 

  7. M. Donsker, S.R.S. Varadhan, Asymptotic evaluations of certain Markov process expectations for large time II, Comm. Pure Appl. Math. 28 (1975), 279–301.

    Article  MATH  Google Scholar 

  8. M. Donsker, S.R.S. Varadhan, Asymptotics for the Wiener sausage, Comm. Pure Appl Math. 28 (1975), 525–565.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Donsker, S.R.S. Varadhan, On the number of distinct sites visited by a random walk, Comm. Pure Appl. Math. 32 (1979), 721–747.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Eisele, R. Lang, Asymptotics for the Wiener sausage with drift, Prob. Th. Rel. Fields 74 (1), (1987), 125–140.

    Article  MathSciNet  Google Scholar 

  11. P. Grassberger, P. Proccaccia, Diffusion and drift in a medium with randomly distributed traps, Phys. Rev. A 26 (1988), 3686–3688.

    Google Scholar 

  12. S. Havlin, A. Bunde, Percolation I, II, in: Fractals and disordered systems, A. Bunde, S. Havlin (eds.), Springer, Berlin (1991), 51–95, 96–149.

    Google Scholar 

  13. M. Kac, Probabilistic methods in some problems of scattering theory, Rocky Mountain J. of Math. 4 (3), (1974), 511–537.

    Article  MATH  Google Scholar 

  14. M. Kac, J.M. Luttinger, Bose Einstein condensation in the presence of impurities I, II, J. Math. Phys. 14 (1973), 1626; 15 (2), (1974), 183–186.

    Google Scholar 

  15. R.F. Kayser, J.B. Hubbard, Reaction diffusion in a medium containing a random distribution of nonoverlapping traps, J. Chem. Phys. 80 (3), (1984), 1127–1130.

    Article  Google Scholar 

  16. W. Kirsch, F. Martinelli, Large deviations and the Lifschitz singularity of the integrated density of states of random Hamiltonians, Comm. Math. Phys. 89 (1983), 27–40.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Lang, Spectral theory of random Schrödinger operators, Lecture Notes in Math. 1498, Springer, Berlin (1991).

    Google Scholar 

  18. I.M. Lifschitz, Energy spectrum structure and quantum states of disordered condensed systems, Sov. Phys. Uspekhi 7 (7), (1965), 549–573.

    Article  MathSciNet  Google Scholar 

  19. I.M. Lifschitz, Theory of fluctuations in disordered systems, Sov. Phys. JETP 26 (2) (1968), 462–469.

    Google Scholar 

  20. L. Pastur, A. Figotin, Spectra of Random and Amost Periodic Operators, Springer (1992).

    Google Scholar 

  21. K. Pietruska-Paluba, The Lifschitz singularity for the density of states on the Sierpinski gasket, Probab. Th. Rel Fields 89 (1991), 1–133.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Rauch, M. Taylor, Potential and scattering theory on wildly perturbed domains, J. Funct. Anal 18 (1975), 27–59.

    Article  MathSciNet  MATH  Google Scholar 

  23. U. Schmock, Convergence of the normalized one dimensional Wiener sausage path measure to a mixture of Brownian taboo processes, Stochastics 29 (1990), 171–183.

    MathSciNet  MATH  Google Scholar 

  24. B. Simon, Functional Integration and Quantum Physics, Academic Press, New York, 1979.

    MATH  Google Scholar 

  25. M. v. Smoluchowski, Versuch einer mathematischen Theorie der koagulationskinetischen Lösungen, Z. Phys. Chemie 92 (1918), 129–168.

    Google Scholar 

  26. F. Spitzer, Electrostatic capacity heat flow and Brownian motion, Z. Wahrsch. Verw. Ueb. 3 (1964), 110–121.

    Article  MathSciNet  MATH  Google Scholar 

  27. A.S. Sznitman, Lifschitz tail and Wiener sausage I, II, J. Funct. Anal. 94 (1990), 223–246, 247–272.

    MathSciNet  Google Scholar 

  28. A.S. Sznitman, Long time asymptotics for the shrinking Wiener sausage, Comm. Pure Appl. Math. 43 (1990), 809–820.

    Article  MathSciNet  MATH  Google Scholar 

  29. A.S. Sznitman, On the confinement property of two dimensional Brownian motion among Poissonian obstacles, Comm. Pure Appl. Math. 44 (1991), 1137–1170.

    Article  MathSciNet  MATH  Google Scholar 

  30. A.S. Sznitman, On long excursions of Brownian motion among Poissonian obstacles, in: Stochastic Analysis, M. Barlow, N. Bingham (eds.), London Math. Soc., Lecture Note Series, Cambridge University Press, 1991, 353–375.

    Chapter  Google Scholar 

  31. A.S. Sznitman, Brownian survival among Gibbsian traps. Ann. Probab. 21 (1), (1993), 490–509.

    Article  MathSciNet  MATH  Google Scholar 

  32. A.S. Sznitman, Brownian asymptotics in a Poissonian environment, Probab. Th. Rel. Fields 95 (1993), 155–174.

    Article  MathSciNet  MATH  Google Scholar 

  33. A.S. Sznitman, Brownian motion in a Poissonian potential, Probab. Th. Rel. Fields 97 (1993), 447–477.

    Article  MathSciNet  MATH  Google Scholar 

  34. A.S. Sznitman, Brownian motion with a drift in a Poissonian potential, Comm. Pure Appl. Math., to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag

About this chapter

Cite this chapter

Sznitman, AS. (1994). Brownian Motion and Obstacles. In: Joseph, A., Mignot, F., Murat, F., Prum, B., Rentschler, R. (eds) First European Congress of Mathematics . Progress in Mathematics, vol 3. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9110-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9110-3_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9911-6

  • Online ISBN: 978-3-0348-9110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics