Skip to main content

Cauchy-Riemann Operators, Self—Duality, and the Spectral Flow

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 3))

Abstract

Atiyah, Patodi and Singer [3] observed that the Fredholm index of the operator

$$ {D_A}\, = \,\frac{d}{{dt}}\, + \,A\left( t \right) $$

with invertible limits \( {A^ \pm }\, = \,\mathop {\lim }\limits_{t \to \pm \infty } \,A\left( t \right) \) is given by the spectral flow of the self-adjoint operator family A(t) (the number of eigenvalues crossing 0 counted with signs). Such operators appear in infinite dimensional analogues of Morse theory as the linearisation of the gradient flow equation. The Fredholm index is the dimension of the space of gradient flow lines connecting two critical points. It can be thought of as the relative Morse index in cases where the absolute Morse index (the number of negative eigenvalues of the Hessian) is infinite.

This research has been partially supported by the SERC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Atiyah, New invariants of three and four dimensional manifolds, in: The Mathematical Heritage of Hermann Weyl, Proc. Sympos. Pure Math. 48, 1988, 295–299.

    Google Scholar 

  2. M.F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Phil Trans. R. Soc. Lond. A 308 (1982), 523–615.

    MathSciNet  Google Scholar 

  3. M.F. Atiyah, V.K. Patodi, and I.M. Singer, Spectral asymmetry and Riemannian geometry III, Math. Proc. Camb. Phil. Soc. 79 (1976), 71–99.

    Article  MathSciNet  MATH  Google Scholar 

  4. S.E. Cappell, R. Lee, and E.Y. Miller, Self-adjoint elliptic operators and manifold decomposition I: General techniques and applications to Casson’s invariant, preprint, 1990.

    Google Scholar 

  5. C.C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions of Hamiltonian equations, Commun. Pure Appl. Math. 37 (1984), 207–253.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. D. Daskalopoulos and K.K. Uhlenbeck, An Application of Transversality to the Topology of the Moduli Space of Stable Bundles, preprint,1990.

    Google Scholar 

  7. S. Donaldson, M. Furuta, and D. Kotschick, Floer Homology Groups in Yang-Mills Theory, in preparation.

    Google Scholar 

  8. S. Dostoglou and D.A. Salamon, Instanton Homology and Symplectic Fixed Points, in: Symplectic Geometry, D. Salamon (ed.), LMS Lecture Note Series 192 (1993), Cambridge University Press, pp. 57–93.

    Google Scholar 

  9. S. Dostoglou and D.A. Salamon, Self-Dual instantons and holomorphic curves, Annals of Mathematics, to appear.

    Google Scholar 

  10. A. Floer, An instanton invariant for 3-manifolds, Commun. Math. Phys. 118 (1988), 215–240.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Floer, Symplectic fixed points and holomorphic spheres, Commun. Math. Phys. 120 (1989), 575–611.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Floer, Instanton Homology and Dehn Surgery, preprint, 1991.

    Google Scholar 

  13. A. Floer and H. Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Mathematische Zeitschrift, to appear.

    Google Scholar 

  14. M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Hofer and D.A. Salamon, Floer Homology and Novikov Rings, to appear in: Gauge Theory, Symplectic Geometry and Topology; Essays in Memory of Andreas Floer, H. Hofer, C. Taubes, and E. Zehnder (eds.)

    Google Scholar 

  16. J. Jones, J. Rawnsley, and D. Salamon, Instanton Homology, preprint 1991.

    Google Scholar 

  17. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1976.

    Google Scholar 

  18. D. McDuff, Elliptic methods in symplectic geometry. Bull. AMS 23 (1990), 311–358.

    Article  MathSciNet  MATH  Google Scholar 

  19. P.E. Newstead, Topological properties of some spaces of stable bundles, Topology 6 (1967), 241–262.

    Article  MathSciNet  MATH  Google Scholar 

  20. J.W. Robbin and D. Salamon, The Maslov index for paths. Topology 32 (1993), 827–844.

    Article  MathSciNet  MATH  Google Scholar 

  21. J.W. Robbin and D. Salamon, The spectral flow and the Maslov index, Bull. LMS, to appear.

    Google Scholar 

  22. D. Salamon, Morse theory, the Conley index and Floer homology, Bull LMS 22 (1990). 113–140.

    MathSciNet  MATH  Google Scholar 

  23. D. Salamon and E. Zehnder. Morse theory for periodic orbits of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), 1303–1360.

    Article  MathSciNet  MATH  Google Scholar 

  24. C.H. Taubes, Casson’s invariant and Gauge theory. J. Diff. Geom. 31 (1990), 547–599.

    MathSciNet  MATH  Google Scholar 

  25. C. Viterbo, Intersections de sous-variétés Lagrangiennes. fonctionelles d’action et indice des systèmes Hamiltoniens, Bull Soc. Math. France 115 (1987), 361–390.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag

About this chapter

Cite this chapter

Dostoglou, S., Salamon, D.A. (1994). Cauchy-Riemann Operators, Self—Duality, and the Spectral Flow. In: Joseph, A., Mignot, F., Murat, F., Prum, B., Rentschler, R. (eds) First European Congress of Mathematics . Progress in Mathematics, vol 3. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9110-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9110-3_17

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9911-6

  • Online ISBN: 978-3-0348-9110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics