Skip to main content

Evidence for a Cohomological Approach to Analytic Number Theory

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 3))

Abstract

The first two sections of this note are an expanded version of the lecture at the Congress. We first explain how a cohomological formalism might look, one that would serve the same purposes for zeta functions of number fields and étale or cristalline cohomology for zeta functions of curves over finite fields. After indicating some consequences of the hypothetical formalism that can actually be proved, we explain how very naturally the Riemann hypotheses would ensue. These matters are also discussed in [De2] but in the much more general framework of motives. We thought that it might be useful to make the simple basic ideas available to non experts for motives as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.V. Ahlfors, Complex Analysis, McGraw-Hill, 1966.

    Google Scholar 

  2. J.V. Armitage, Zeta functions with a zero at \( s = \frac{1}{2} \), Invent. Math. 15 (1972), 199–205.

    Article  MathSciNet  MATH  Google Scholar 

  3. M.F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic differential operators, Bull. AMS 72 (1966), 245–250.

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Barner, On A. Weil’s explicit formula, J. reine angew. Math. 323 (1981), 139–152.

    Article  MathSciNet  MATH  Google Scholar 

  5. B-F-K] K.M. Bartz, T. Fryska, and J. Kaczorowski, Complex Explicit Formulae in the Theory of Numbers, preprint.

    Google Scholar 

  6. P. Berthelot, Cohomologic cristalline des schémas de charactéristique p é 0, Lecture Notes in Math. 407, Springer (1974).

    Google Scholar 

  7. H. Cramér, Studien über die nullstellen der Riemannschen zetafunktion, Math. Z. 4 (1919), 104–130.

    Article  MathSciNet  Google Scholar 

  8. P. Deligne, La conjecture de Weil L Puhl Math. IHES 43 (1974), 273–307.

    MathSciNet  Google Scholar 

  9. C. Deninger, Local L-factors of motives and regularized determinants, Invent. Math. 107 (1992), 135–150.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Deninger, L-functions of Mixed Motives, in: Motives, Proc. Sympos. Pure Math. 55 (1), Providence. 1994.

    Google Scholar 

  11. C. Deninger, Lefschetz trace formulas and explicit formulas in analytic number theory, J. reine angew. Math. 441 (1993), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Erdelyi, Higher Transcendental Functions vol. II. Bateman Manuscript project. McGraw-Hill, 1953.

    Google Scholar 

  13. G. Illies, Regularisierte Produkte und Heckesche L-Reihen, Diplomarbeit, Münster (1992).

    Google Scholar 

  14. J. Jørgenson and S. Lang, Some analytic properties of regularized products, part II: Fourier theoretic properties, in: Basic Analysis of Regularized Products, Lecture Notes in Math. 1564 (1993).

    Google Scholar 

  15. J. Jørgenson and S. Lang, Some analytic properties of regularized products, part I: Complex analytic properties, in: Basic Analysis of Regularized Products, Lecture Notes in Math. 1564 (1993).

    Google Scholar 

  16. J. Jørgenson and S. Lang, Some analytic properties of regularized products, part II: Fourier theoretic properties, in: Basic Analysis of Regularized Products, Lecture Notes in Math. 1564 (1993).

    Google Scholar 

  17. J. Jørgenson and S. Lang, On Cramér’s theorem for general Euler products with functional equation, Math. Ann. 297 (1993), 1–416.

    Article  MathSciNet  Google Scholar 

  18. J. Jørgenson and S. Lang, Explicit formulas and regularized products, in: Basic Analysis of Regularized Products, Lecture Notes in Math. 1564 (1993).

    Google Scholar 

  19. J. Kaczorowski, The k-functions in multiplicative number theory I, II, III, Acta Arithmetica 56 (1990), 195–211 and 213–224; 57 (1991), 199–210.

    MathSciNet  Google Scholar 

  20. N. Katz and W. Messing, Some consequences of the Riemann hypotheses for varieties over finite fields, Invent. Math. 23 (1974), 73–77.

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Kurokawa, On some Euler products I, Proc. Japan Acad. Sei. Ser A 9 (1984), 335–338.

    Article  MathSciNet  Google Scholar 

  22. N. Kurokawa, Parabolic components of zeta functions, Proc. Japan Acad. Sei. Ser. A 64 (1988), 21–24.

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Erster Band, Teubner, 1909.

    Google Scholar 

  24. Y.I. Manin, Lectures on zeta functions, preprint, 1992.

    Google Scholar 

  25. J-P. Serre, Sur la topologie des variétés algébriques en charactéristique p, Symp. Int. Top. Alg., Mexico (1958), 24–53.

    Google Scholar 

  26. J-P. Serre, Analogues kählériens de certaines conjectures de Weil, Ann. Math. 71 (1960), 392–394.

    Article  MATH  Google Scholar 

  27. A. Smirnov, Note about a Number-Theoretic Analogue of Hurwitz Inequalities, preprint, 1992.

    Google Scholar 

  28. M. Schröter and Ch. Soulé, On a result of Deninger concerning Riemann’s zeta function, in: Motives, Proc. Symp. Pure Math. 55, Providence (1994).

    Google Scholar 

  29. J. Täte, Fourier analysis in number fields and Hecke’s zeta function, in: Alg. Number Theory, Proc. Brighton, Academic Press, 1968.

    Google Scholar 

  30. A. Weil, On the Riemann hypotheses in function-fields, Proc. Nat. Acad. Sci. 27 (1941), 345–347.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag

About this chapter

Cite this chapter

Deninger, C. (1994). Evidence for a Cohomological Approach to Analytic Number Theory. In: Joseph, A., Mignot, F., Murat, F., Prum, B., Rentschler, R. (eds) First European Congress of Mathematics . Progress in Mathematics, vol 3. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9110-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9110-3_16

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9911-6

  • Online ISBN: 978-3-0348-9110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics