Skip to main content

On a conjecture of C. Berenstein and A. Yger

  • Conference paper
Algorithms in Algebraic Geometry and Applications

Part of the book series: Progress in Mathematics ((PM,volume 143))

Abstract

Let d ≥ 5 and k ≥ 1 be two integers, and let n = 10k + 1. A well-known example of E. Mayr and A. Meyer (see [MM]) shows that there are n polynomials f 1,…,f n Є C[x 1,…, x n ] of degree ≤ d such that x 1 belongs to the ideal generated by f 1,…, f n that and each solution a 1,…, a n of the equation

$$\mathop x\nolimits_1 = \mathop a\nolimits_1 \mathop f\nolimits_1 + ... + \mathop a\nolimits_n \mathop f\nolimits_n ,{\rm }\mathop a\nolimits_{1,...,} \mathop a\nolimits_n \in C\left[ {\mathop x\nolimits_1 ,....\mathop x\nolimits_n } \right]$$

satisfies max deg \(\mathop a\nolimits_i > \mathop {(d - 2)}\nolimits^{\mathop 2\nolimits^{k - 1} }\). In other words, the growth of the degrees of the polynomial coefficients in the representation problem for an ideal a \(\subseteq C\left[ {\mathop x\nolimits_1 ,...,\mathop x\nolimits_n } \right] \) is, in general, double-exponential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Amoroso, “Tests d’appartenance d’après un théorème de J. Kollár”. C.R. Acad. Se. Paris, 309, Série I, pp. 691–694, (1989).

    MathSciNet  MATH  Google Scholar 

  2. F. Amoroso, “Membership problem”, in “Approximation Diophanti- ennes et Nombres Transcendants. Luminy 1990”, ed. P. Philippon, Walter de Gruyter, Berlin, pp. 1–13 (1992).

    Google Scholar 

  3. W.D. Brownawell, “Bounds for the degrees in the Nullstellensatz”, Annals of Mathematics 126, pp. 577–591 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  4. C.A. Berenstein and A. Yger, “Bounds for the degrees in the division problem”, Mich. Math. J. 37, No.l, pp. 25–43 (1990).

    MathSciNet  MATH  Google Scholar 

  5. C.A. Berenstein and A. Yger, “Effective Bezout identities in Q[x 1,…,x n ]”, Acta Math. 166, 1991, pp. 69–120 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  6. C.A. Berenstein and A. Yger, “Une formule de Jacobi et ses conséquences”, Ann. Sci. E.N.S., 4ieme série, 24, pp. 363–377 (1991).

    MathSciNet  MATH  Google Scholar 

  7. C.A. Berenstein and A. Yger, “Représentations intégrales et division”, in “Approximation Diophantiennes et Nombres Transcendants. Luminy 1990”, ed. P. Philippon, Walter de Gruyter, Berlin pp. 15–37 (1992).

    Google Scholar 

  8. L. Caniglia, A. Galligo and J. Heintz, “Borne simple exponentielle pour les degrés dans le théorème des zéros sur un corps de caractéristique quelconque”, C.R. Acad. Se. Paris, t.307, Série I. pp. 255–258, (1988).

    MathSciNet  MATH  Google Scholar 

  9. A. Dickenstein, N. Fitchas, M. Giusti and C. Sessa. “The membership problem for unmixed polynomial ideals is solvable in single exponential time”, Discrete Appi. Math. 33, pp. 73–94 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Elkadi, “Bornes pour le degré et les hauteurs dans le problème de division”, to appear in Michigan Math. Journal.

    Google Scholar 

  11. N. Fitchas and A. Galligo, “Nullstellensatz effectif et conjecture de Serre (Théorème de Quillen-Suslin) pour le Calcul Formel”. Math. Nachr. 149, pp. 231–253 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Gruson, R. Lazarsfeld and C. Peskine. “On a theorem of Castelnuovo and the equations defining space curves”. Inv. Math. 72, pp. 491–506 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Hermann, “Die Frage der endlich vielen Schritte in der Theorie der Polynomideale”, Math. Ann. 95, pp. 736–788 (1926).

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Krick and A. Logar, “Membership problem, Representation problem and the computation of the radical for one-dimensional ideals”, in Effective Methods in Algebraic Geometry, Proc. Intern. Conf. MEGA 90, Castiglioncello 1990, T. Mora and C. Traverso, eds., Progress in Math. 94, pp. 169–193 (1991).

    Google Scholar 

  15. T. Krick and L.M. Pardo, “Une approche informatique pour l’approximation diophantienne”, C.R. Acad. Se. Paris, t.318, Série I, pp. 407–412, (1994).

    MathSciNet  MATH  Google Scholar 

  16. T. Krick and L.M. Pardo, “A Computational Method for Diophantine Approximation”, in this volume.

    Google Scholar 

  17. J. -P. Jouanolou, “Théorèmes de Bertini et applications”, Progress in Math., Birkhäuser, Boston, (1983).

    Google Scholar 

  18. J. Kollár, “Sharp effective Nullstellensatz”, Journal of the American Math. Soc. 1, No.4, pp. 963–975 (1988).

    Article  MATH  Google Scholar 

  19. E. Mayr and A. Meyer, “The complexity of the word problem for commutative semigroup and polynomial ideals”, Advances in Math. 46, pp. 305–329 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  20. D.G. Northcott, “Lessons on rings, modules and multiplicities”, Cambridge University Press 1968.

    Book  MATH  Google Scholar 

  21. D.G. Northcott and D. Rees, “Reduction of ideals in local rings”, Proc. Camb. Phil. Soc., pp. 145–158 (1954).

    Google Scholar 

  22. J. Lipman and B. Teissier, “Pseudo-rational local rings and a theorem of Briançon-Skoda about integral closures of ideals”, Michigan Math. J., 28, pp. 97–116 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Philippon, “Théorème des zéros effectif, d’après J.Kollár”, dans “Problèmes Diophantiens 1987/88”, Publications de l’Université de Paris VI No.88 (1988).

    Google Scholar 

  24. P. Philippon, “Dénominateurs dans le théorème des zéros de Hilbert”, Acta Arith. 58, pp. 1–25 (1991).

    MathSciNet  MATH  Google Scholar 

  25. O. Zariski and P. Samuel, “Commutative Algebra”, Vol.2, Van Nos- trand, Princeton 1960; Springer-Verlag, Berlin-Heidelberg-New York 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Amoroso, F. (1996). On a conjecture of C. Berenstein and A. Yger. In: González-Vega, L., Recio, T. (eds) Algorithms in Algebraic Geometry and Applications. Progress in Mathematics, vol 143. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9104-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9104-2_2

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9908-6

  • Online ISBN: 978-3-0348-9104-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics