Skip to main content

The complexity and enumerative geometry of aspect graphs of smooth surfaces

  • Conference paper
Algorithms in Algebraic Geometry and Applications

Part of the book series: Progress in Mathematics ((PM,volume 143))

Abstract

Informally, the aspect graph [KvD79] (also called view graph) is a qualitative, viewer-centered representation which enumerates all possible appearances of an object. More formally, choosing a camera model (orthographic-parallel or perspective-central-projection) and a viewpoint determines the aspect of an object (i.e., the structure of the observed line-drawing). The range of possible viewpoints can be partitioned into maximal connected sets (regions) that yield identical aspects. The change in aspect at the boundary between regions is called a visual event. The maximal regions and the associated aspects form the nodes of an aspect graph, whose arcs correspond to the visual event boundaries between adjacent regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V. Singularities of Smooth Mappings. Russian Mathematical Surveys, 38(2):87–176 (1983).

    Article  Google Scholar 

  2. Arnold, V. Catastrophe Theory. Springer-Verlag, Heidelberg (1984).

    MATH  Google Scholar 

  3. Baker, H. Introduction to the Theory of Algebraic Surfaces and Higher Loci. In Principles of Geometry, volume VI. Frederick Ungar Publishing Co. (1933).

    Google Scholar 

  4. Beauville, A. Surfaces algébriques complexes. In Astérisque, volume 54. Société Mathématique de France (1978).

    Google Scholar 

  5. Buchberger, B. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory. In Bose, N., editor, Multidimensional Systems Theory. 184–232. Reidel, Dordrecht-Boston-Lancaster (1985).

    Google Scholar 

  6. Callahan, J. and Weiss, R. A Model for Describing Surface Shape. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA (USA), 240 245 (1985).

    Google Scholar 

  7. Colley, S. Lines Having Specified Contact with Projective Varieties. In Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, volume 6, 47–70, American Mathematical Society (1986).

    Google Scholar 

  8. Colley, S. Enumerating Stationary Multiple-Points. Advances in Mathematics, 66(2):149–170 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  9. Collins, G. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition. In Lecture Notes in Computer Science, volume 33, 134–183, Springer-Verlag (1975).

    Google Scholar 

  10. do Carmo, M. Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs, New Jersey (1976).

    MATH  Google Scholar 

  11. Eggert, D. and Bowyer, K. Computing the Orthographic Projection Aspect Graph of Solids of Revolution. In Proceedings of the IEEE Workshop on Interpretation of 3D Scenes, 102–108, Austin, Texas (1989).

    Google Scholar 

  12. Fulton, W. Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag (1984).

    MATH  Google Scholar 

  13. Grothendieck, A. Sur quelques propriétés fondamentales en théorie des intersections. In Proceedings of Seminaire C. Chevalley, E.N.S., Paris (1958).

    Google Scholar 

  14. Hartshorne, R. Algebraic Geometry. Springer-Verlag (1977).

    MATH  Google Scholar 

  15. Kergosien, Y. La famille des projections orthogonales d’une surface et ses singularités. C.R. Académie des Sciences de Paris, 292:929–932 (1981).

    MathSciNet  MATH  Google Scholar 

  16. Kleiman, S. The Enumerative Theory of Singularities. In Holm, P., editor, Real and Complex Singularities, 297–397. Sijthoff and Noordhoff International Publishers. Nordic Summer School, Oslo (1976).

    Google Scholar 

  17. Kleiman, S. Multiple-Point Formulas I: Iteration. Acta Mathematica, 147:13–49 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  18. Kleiman, S. Multiple-Point Formulas II: The Hilbert Scheme. In Xambó-Descamps, S., editor, Enumerative Geometry, volume 1436 of Lecture Notes in Mathematics, 101–138, Springer-Verlag (1990).

    Chapter  Google Scholar 

  19. Koenderink, J. An Internal Representation for Solid Shape Based on the Topological Properties of the Apparent Contour. In Richards, W. and Ullman, S., editors, Image Understanding: 1985–86, chapter 9, 257–285. Ablex Publishing Corporation, Norwood, NJ (1986).

    Google Scholar 

  20. Koenderink, J. Solid Shape. MIT Press, Cambridge, MA (1990).

    Google Scholar 

  21. Koenderink, J. and van Doom, A. The Internal Representation of Solid Shape with Respect to Vision. Biological Cybernetics, 32:211–216 (1979).

    Article  MATH  Google Scholar 

  22. Kriegman, D. and Ponce, J. Computing Exact Aspect Graphs of Curved Objects: Solids of Revolution. International Journal of Computer Vision, 5(2): 119–135 (1990).

    Article  Google Scholar 

  23. Kulikov, V. The Calculation of the Singularities of the Embedding of a Generic Algebraic Surface in the Projective Space â„™3. Functional Analysis and Applications, 17:176 186 (1983).

    Google Scholar 

  24. le Barz, P. Géométrie énumerative pour les multisécantes. In Dold. A. and Eckmann, B., editors. Variétés Analytiques Compactes. volume 683 of Lecture Notes in Mathematics, 116–167, Springer-Verlag (1978).

    Chapter  Google Scholar 

  25. le Barz, P. Formules pour les trisécantes des surfaces algébriques. L’Enseignement Mathématique, 33:1–66 (1987).

    MATH  Google Scholar 

  26. Mather, J. Generic Projections. Annals of Mathematics, 98:226 245 (1973).

    MathSciNet  Google Scholar 

  27. Milnor, J. On the Betti Numbers of Real Varieties. In Proceedings of the American Mathematical Society, volume 15. 275–280 (1964).

    Google Scholar 

  28. Morgan, A. Solving Polynomial Systems using Continuation for Engineering and Scientific Problems. Prentice Hall. Englewood Cliffs. New Jersey (1987).

    MATH  Google Scholar 

  29. Petitjean, S., Ponce, J. and Kriegman, D. Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces. International Journal of Computer Vision, 9(3):231–255 (1992).

    Article  Google Scholar 

  30. Piene, R. Some Formulas for a Surface in ℙ3 In Dold. A. and Eckmann, B., editors, Algebraic Geometry, volume 687 of Lecture Notes in Mathematics, 196–235, Springer-Verlag (1977).

    Chapter  Google Scholar 

  31. Platonova, O. Singularities of the Mutual Disposition of a Surface and a Line. Russian Mathematical Surveys. 36:248 249 (1981).

    Google Scholar 

  32. Ponce. J. and Kriegman, D. Computing Exact Aspect Graphs of Curved Objects: Parametric Surfaces. Technical Report UHJCDCS-R-90–1579, University of Illinois-CS Department (1990).

    Google Scholar 

  33. Rieger, J. On the Classification of Views of Piecewise-Smooth Objects. Image and Vision Computing, 5:91–97 (1987).

    Article  Google Scholar 

  34. Rieger, J. Apparent Contours and their Singularities. PhD thesis. Queen Mary College (1988).

    Google Scholar 

  35. Rieger, J. The Geometry of View Space of Opaque Objects Bounded by Smooth Surfaces. Artificial Intelligence, 44(1–2):1–40 (1990).

    Article  MATH  Google Scholar 

  36. Rieger, J. Global Bifurcation Sets and Stable Projections of Nonsingular Algebraic Surfaces. International Journal of Computer Vision, 7(3): 171–191 (1992).

    Article  Google Scholar 

  37. Rieger, J. Computing View Graphs of Algebraic Surfaces. Journal of Symbolic Computation, 11:1–14 (1993).

    MathSciNet  Google Scholar 

  38. Rieger, J. On the Complexity and Computation of View Graphs of Piecewise-Smooth Algebraic Surfaces. Technical Report FBI-HH-M- 228/93, Universität Hamburg (1993).

    Google Scholar 

  39. Roy, M.-F. and van Effelterre, T. Aspects Graphs of Bodies of Revolution with Algorithms of Real Algebraic Geometry. In Proceedings of AAGR’92, Linz, Austria (1992).

    Google Scholar 

  40. Salmon, G. A Treatise on the Analytic Geometry of Three Dimensions, volume II. Dublin, 5th edition (1915).

    MATH  Google Scholar 

  41. Semple, J. and Roth, L.Introduction to Algebraic Geometry. Clarendon Press (1949).

    MATH  Google Scholar 

  42. Tari, F. Projections of Piecewise-Smooth Surfaces. Journal of London Mathematical Society, 44:155–172 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  43. Thom, R. Les singularités des applications différentiales. Annales Institute Fourier, 6:43–87 (1956).

    Article  MathSciNet  Google Scholar 

  44. Weatherburn, C. Differential Geometry. Cambridge University Press (1927).

    MATH  Google Scholar 

  45. Whitney, H. On singularities of Mappings of Euclidean Spaces. I. Mappings of the Plan into the Plane. Annals of Mathematics, 62(3):374–410 (1955).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Petitjean, S. (1996). The complexity and enumerative geometry of aspect graphs of smooth surfaces. In: González-Vega, L., Recio, T. (eds) Algorithms in Algebraic Geometry and Applications. Progress in Mathematics, vol 143. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9104-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9104-2_16

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9908-6

  • Online ISBN: 978-3-0348-9104-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics