Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 143))

Abstract

Given a system of n generic Laurent polynomials

$$f_i (x) = \sum\limits_{q \in A_i } {c_{iq} x^q ;} \,\,\,\,\,q = (q{}_1,...,q_n );\,\,\,\,x^q = x_1^{q_1 } x_2^{q_2 } ...x_n^{q_n }$$
(1.1)

with support sets A i ⊂ℤn, we consider the ring

$$A{ : = }K\left[ {x_{1} ,x_1^{ - 1} ,...,x_{n,} x_n^{ - 1} } \right]/\left( {f_1 ,....f_n } \right),$$

where K is the field ℚ({c iq }). The K-dimension of A equals the number of toric roots {x ∈ (ℂ*)n : f i (x) = 0, 1 ≤ in}. By Bernstein’s theorem [Ber], this number equals the mixed volume Mν(P 1 ,..., P n ) of the Newton polytopes P i := conv(A i ) . The objective of this note is to construct explicit K-bases for A, using the combinatorial technique of mixed subdivisions of the Minkowski sum P := P 1 + ... + P n.

Partially supported by NSF grant CCR-9258533 (NYI).

Partially supported by a David and Lucile Packard Fellowship and NSF grants DMS-9201453 and DMS-9258547 (NYI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, E., Wörmann, T.: “On the trace formula for quadratic forms”, Recent Advances in Real Algebraic Geometry and Quadratic Forms, Proceedings of the RAGSQUAD Year, Berkeley 1990–1991, W.B. Jacob. T.- Y. Lam, R.O. Robson (editors), Contemporary Mathematics.155 (1993) pp. 271 291.

    Google Scholar 

  2. Bernstein, D. N.: “The number of roots of a system of equations”, Functional Analysis and its Applications 9 (1975), pp. 1–4.

    Article  Google Scholar 

  3. Betke, U.: “Mixed volumes of polytopes”:Archiv d. Mathematik 58 (1992), pp. 388–391.

    Article  MathSciNet  MATH  Google Scholar 

  4. Canny, J., Emiris, I.: “An Efficient Algorithm for the Sparse Mixed Resultant”, in Proc. AAECC-10, edited by G. Cohen, T. Mora and O. Moreno”, Springer Lecture Notes in Computer Science 263 (1993), pp. 89–104.

    Google Scholar 

  5. Curtis, C.W., I. Reiner, I.: “Representation Theory of Finite Groups and Associative Algebras”, Wiley Interscience Publishers, 1962.

    MATH  Google Scholar 

  6. Emiris, I.Z., Rege, A.: “Monomial bases and polynomial system solving”, submitted to ISSAC 1994.

    Google Scholar 

  7. Gelfand, I. M., Kapranov, M. M., Zelevinsky, A. V.: “Discriminants of polynomials in several variables and triangulations of Newton polytopes”, Algebra i analiz (Leningrad Math. J.) 2 (1990) pp. 1–62.

    MathSciNet  Google Scholar 

  8. Gelfand, I. M., Kapranov, M. M., Zelevinsky, A. V.: “Discriminants, Resultants and Multidimensional Determinants”, Birkhäuser, Boston, 1994.

    Book  MATH  Google Scholar 

  9. Huber, B., Sturmfels, B.: “A polyhedral method for solving sparse polynomial systems”,Mathematics of Computation, to appear.

    Google Scholar 

  10. Pedersen, P.: “Multivariate Sturm Theory”, in Proc. AAECC-9, New Orleans 1991, Springer Lect. Notes in Comp. Sei. 537 (1991), pp. 318–332.

    Google Scholar 

  11. Pedersen, P., Roy, M. F., Szpirglas, A.: “Counting real zeros in the multivariate case”, in “Computational Algebraic Geometry” (eds. F. Eyssette, A. Galligo), Proceedings MEGA-92, Birkhäuser, 1992, pp. 203–223.

    Google Scholar 

  12. Pedersen, P., Sturmfels, B.: “Product formulas for resultants and Chow forms”,Mathematische Zeitschrift 214 (1993) pp. 377–396.

    Article  MathSciNet  MATH  Google Scholar 

  13. Scharlau, W.: “Quadratic and Hermitian Forms”, Springer, Grundlehren der mathematischen Wissenschaften270, 1985.

    Google Scholar 

  14. Sturmfels, B.: “The asymptotic number of real zeros of a sparse polynomial system”, to appear in Proceedings of the Workshop on “Hamiltonian and Gradient Flows: Algorithms and Control”, (ed. A.Bloch), Fields Institute, Waterloo, Ontario, March 1992.

    Google Scholar 

  15. Sturmfels, B.: “On the Newton polytope of the resultant”, Journal of Algebraic Combinatorics 3 (1994) pp. 207–236.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Pedersen, P., Sturmfels, B. (1996). Mixed monomial bases. In: González-Vega, L., Recio, T. (eds) Algorithms in Algebraic Geometry and Applications. Progress in Mathematics, vol 143. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9104-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9104-2_15

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9908-6

  • Online ISBN: 978-3-0348-9104-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics