Skip to main content

A computational method for diophantine approximation

  • Conference paper
Algorithms in Algebraic Geometry and Applications

Part of the book series: Progress in Mathematics ((PM,volume 143))

Abstract

The procedures to solve algebraic geometry elimination problems have usually been designed from the point of view of commutative algebra. For instance, let us consider the problem of deciding whether a given system of polynomial equalities has a solution. This means that we have to eliminate a single block of quantifiers in a formula with polynomial equations.

Partially supported by UBACYT and CONICET (Argentina)

Partially supported by DGICyT PB 92-0498-C02-01, PB93-0472-C02-02, TIC 1026-CE and “POSSO”, ESPRIT-BRA 6846.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Balcazar, J. L. Díaz, J. Gabarró. “Structural Complexity I”, EATCS Mon. on Theor. Comp. Sci. 11, Springer, 1988.

    Google Scholar 

  2. C. Berenstein, A. Yger. “Effective Bézout identities in ℚ[X1….. Xn]”, Acta Math., 166 pp. 69–120, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Berenstein, A. Yger. “Une Formule de Jacobi et ses conséquences”, Ann. Sci. E.N.S., 4 ieme série, 24 pp. 363–377, 1991.

    MathSciNet  MATH  Google Scholar 

  4. S. J. Berkowicz.“On computing the determinant in small parallel time using a small number of processors”, Inf. Proc. Letters 18 pp. 147–150, 1984.

    Article  Google Scholar 

  5. A. Borodin, J. von zur Gathen, J. Hopcroft. “Fast parallel matrix and gcd computations”, Proc. 23th Annual Symp. FOCS pp. 65–71, 1982.

    Google Scholar 

  6. A. Borodin.“On Relating Size and Depth to Time and Space”. SIAM J. on Comp. 6 pp. 733–744, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.-B. Bost, H. Gillet, C. Soulé. “Un analogue arithmétique du théorème de Bézout”,C.R. Acad. Sci. Paris, t. 312, Série I pp. 845–848, 1991.

    MATH  Google Scholar 

  8. J.-B. Bost, H. Gillet, C. Soulé. “Heights of projective varieties and positive Green forms”, Manuscrit I.H.E.S., 1993.

    Google Scholar 

  9. J. Briançon.“On Euclid’s algorihtm and the computation of polynomial greatest common divisors”, J. ACM 18 pp. 478–504, 1971.

    Article  Google Scholar 

  10. D. W. Brownawell. “Bounds for the degree in the Nullstellensatz”, Annals of Math. 126 pp. 577–591, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. W. Brownawell. “Local Diophantine Nullstellen inequalities”, J. Amer. Math. Soc. 1 pp. 311–322, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Caniglia, A. Galligo, J. Heintz. “Borne simplement exponentielle pour les degrés dans le théorème des zéros sur un corps de caractéristique quelconque”, C.R. Acad. Sci. Paris, t. 307 Série I pp. 255–258, 1988.

    MathSciNet  MATH  Google Scholar 

  13. J. Canny. “Some algebraic and geometric problems in PSPACE”, Proc. 20-th Ann. ACM Symp. Theory of Computing pp. 460–467, 1988.

    Google Scholar 

  14. A. Dickenstein, N. Fitchas, M. Giusti, C. Sessa. “The membership problem for unmixed polynomial ideals is solvable in single exponential time”, Discrete Appi. Math. 33 pp. 73–94, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Dickenstein, C. Sessa. “Résidus de formes méromorphes et cohomologie modérée”, Géométrie Complexe, Prépublication Université Paris 7, 1994.

    Google Scholar 

  16. M. Elkadi. “Bornes pour le degré et les hauteurs dans le problème de division”, to appear in Michigan Math. J., 1993.

    Google Scholar 

  17. N. Fitchas, A. Galligo. “Nullstellensatz effectif et conjecture de Serre (théorème de Quillen-Suslin) pour le Calcul Formel”, Math. Nach. 149, pp. 231–253, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Fitchas, M. Giusti, F. Smietanski. “Sur la complexité du théorème des zéros”, Manuscript Ecole Polytechnique, 1993.

    Google Scholar 

  19. C. B. Garcia and W. I. Zangwill. “Pathways to solutions, fixed points and equilibria”, Prentice-Hall, N. J., 1981.

    Google Scholar 

  20. J. von zur Gathen. “Parallel algorithms for algebraic problems”, Proc. 13-th Conf. MFCS. Springer LN Comp. Sci. 233, pp. 93–112, 1986.

    Google Scholar 

  21. A. O. Gel’fond. Transcendental and Algebraic Numbers, New York: Dover, 1960.

    Google Scholar 

  22. M. Giusti, J. Heintz. “Algorithmes - disons rapides - pour la décomposition d’une variété algébrique en composantes irréductibles et équidimen- sionelles”, Progress in Math. 94, T.Mora and C. Traverso Eds., Birkhäuser pp. 169–193, 1991.

    MathSciNet  Google Scholar 

  23. M. Giusti, J. Heintz. “La détermination des points isolés et de la dimension d’une variété algébrique peut se faire en temps polynomial”. to appear in Proc. Int. Meeting on Commutative Algebra, Cortona, 1991.

    Google Scholar 

  24. M. Giusti, J. Heintz, J. Sabia. “On the efficiency of effective Nullstellensätze”, Computational Complexity 3 pp. 56–95. 1993.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Iu. Grigor’ev, N. N. Vorobjov. “Solving systems of polynomial inequalities in subexponential time”, J. Symb. Comp. 5 pp. 37–64, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Heintz. “Fast quantifier elimination over algebraically closed fields”, Theoret. Comp. Sci. 24, pp. 239–277, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Heintz. “On the computational complexity of polynomials and bilinear mappings”, Proc. AAECC-5, Springer LNCS 356, pp. 269–300, 1989.

    MathSciNet  Google Scholar 

  28. J. Heintz, J. Morgenstern. “On the intrinsic complexity of elimination theory”. J. of Complexity 9, pp. 471–498, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Heintz, C. P. Schnorr. “Testing Polynomials wich are easy to compute”, Proc. 12th Ann. ACM Symp. on Computing, pp. 262–268, 1980.

    Google Scholar 

  30. J. Heintz and M. Sieveking. “Lower Bounds for polynomials with algebraic coefficients”, Theoret. Comp. Sci. 11, pp. 321–330, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Hermann. “Die Frage der endlich vielen Schritte in der Theorie der Polynomideale”, Math. Ann. 95, pp. 736–788, 1926.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Iversen. Generic Local Structures in Commutative Algebra, Lect. Notes in Math. 310, Springer-Verlag, 1973.

    Google Scholar 

  33. J. P. Jouanolou. Théorèmes de Bertini et applications, Progress in Math. 42, Birkhäuser, 1983.

    Google Scholar 

  34. J. Kollár. “Sharp Effective Nullstllensatz”, J. of A.M.S. 1, pp. 963–975, 1988.

    MATH  Google Scholar 

  35. E. Kunz. Kähler Differentials, Advanced Lectures in Math., Vieweg- Verlag, 1986.

    MATH  Google Scholar 

  36. E. Kunz. Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, 1985.

    MATH  Google Scholar 

  37. E. Landau. “Sur quelques théorèmes de M. Petrovic relatifs aux zéros des fonctions analytiques”, Bull. S.M.F., t. 33, pp. 251–261, 1905.

    MATH  Google Scholar 

  38. S. Lang. Fundamentals of Diophantine Geometry, Springer-Ver lag, 1983.

    MATH  Google Scholar 

  39. S. Lang. Transcendental Number Theory, Addison-Wesley, 1966.

    Google Scholar 

  40. D. Lazard. “Résolution des systèmes d’équations algébriques”, Theor. Comp. Sei. 15, pp. 77–110, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  41. H. Matsumura. Commutative Ring Theory, Cambridge University Press, 1986.

    MATH  Google Scholar 

  42. E. Mayr. “Membership problem to polynomial ideals is exponential space complete”, preprint.

    Google Scholar 

  43. E. Mayr, A. Meyer. “The complexity of the word problem for commutative semigroups ”, Advances in Math. 46, pp. 305–329, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Mignotte. Mathématiques pour le Cacul Formel, Presses Univ. de France, 1989.

    Google Scholar 

  45. J. L. Montaña, L. M. Pardo. “Lower Bounds for Arithmetic Networks”, AAECC vol. 4, pp. 1–24, 1993.

    Article  MATH  Google Scholar 

  46. J. L. Montaña, L. M. Pardo, T. Recio. “The non-scalar model of complexity in computational semialgebraic geometry”, Progress in Mathematics 94, T.Mora and C. Traverso eds., Birkhäuser, pp. 346–362, 1991.

    Google Scholar 

  47. D. W. Masser, G. Wüstholz. “Fields of large transcendence degree generated by values of elliptic functions”, Invent. Math. 72, pp. 407–463, 1971.

    Article  Google Scholar 

  48. J. Sabia, P. Solernó. “Bounds for traces in complete intersections and degrees in the Nullstellensatz”, to appear in AAECC Journal, 1993.

    Google Scholar 

  49. T. Schneider.Einführung in die transzendenten Zahlen, Springer-Verlag, Berlin, 1957.

    MATH  Google Scholar 

  50. C. P. Schnorr. “Improved lower bounds on the number of multiplications/divisions which are necessary to evaluate polynomials”, Theor. Comp. Sei. 7, pp. 251–261, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  51. I. R. Shafarevich. “Basic Algebraic Geometry”. Springer-Verlag, 1977.

    MATH  Google Scholar 

  52. M. Shub, S. Smale. “On the intractability of Hilbert’s Nullstellensatz and an algebraic version of P=NP?. IBM Research Report 19624 (86196), 1994.

    Google Scholar 

  53. V. Strassen. “Polynomials with rational coefficients which are hard to compute”, SIAM J. Comput. 3, pp. 128–149, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  54. V. Strassen. “Vermeidung von Divisionen”, Grelle J. Reine Angew. Math. 264, pp. 184–202, 1973.

    MathSciNet  MATH  Google Scholar 

  55. V. Strassen. “Algebraic Complexity Theory”, Hand Book of Theoretical Computer Science, ch. 11, pp. 634 671, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Krick, T., Pardo, L.M. (1996). A computational method for diophantine approximation. In: González-Vega, L., Recio, T. (eds) Algorithms in Algebraic Geometry and Applications. Progress in Mathematics, vol 143. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9104-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9104-2_11

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9908-6

  • Online ISBN: 978-3-0348-9104-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics