Skip to main content

Summary

In this survey article we discuss the problem of determining the number of representations of an integer as sums of triangular numbers. This study yields several interesting results. If n ≥0 is a non-negative integer, then the nth triangular number is T n = n(n + 1)/2. Let k be a positive integer. We denote by δ k (n) the number of representations of n as a sum of k triangular numbers. Here we use the theory of modular forms to calculate δ k (n). The case where k = 24 is particularly interesting. It turns out that, if n ≥3 is odd, then the number of points on the 24 dimensional Leech lattice of norm 2n is 212(212 − 1)δ 24(n − 3). Furthermore the formula for δ 24(n) involves the Ramanujan τ(n)-function. As a consequence, we get elementary congruences for τ(n). In a similar vein, when p is a prime, we demonstrate δ 24 (p k − 3) as a Dirichlet convolution of σ 11(n) and τ (n). It is also of interest to know that this study produces formulas for the number of lattice points inside k-dimensional spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, G., Eureka! num = Δ + Δ + Δ. J. Number Theory 23 (1986), 285–293.

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, G., The theory of partitions. [Encyclopedia of Math., Vol. 2]. Addison-Wesley, Reading, MA, 1976.

    Google Scholar 

  3. Conway, J. and sloane, N., Sphere packings, lattices and groups. Springer-Verlag, 1988.

    Google Scholar 

  4. Deligne, P., Formes modulaires et representations 1-adiques. In Seminaire Bourbaki [Lett. Notes in Math., No. 179], Springer-Verlag, Berlin, 1971.

    Google Scholar 

  5. Deligne, P. and Serre, J.-P., Formes modulaires de poids 1. Ann. Scient. Ecole Norm. Sup. (4) 7 (1974).

    Google Scholar 

  6. Dickson, L., Theory of numbers, Vol. III. Chelsea, New York, 1952.

    Google Scholar 

  7. Garvan, F., Kim, D. and Stanton, D., Cracks and t-cores. Invent. Math. 101 (1990), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  8. Garvan, F., Some congruence properties for partitions that are p-cores. Proc. London Math. Soc. 66 (1993),449–478.

    Article  MathSciNet  MATH  Google Scholar 

  9. Gordon, B. and Robins, S., Lacunarity of Dedekind q-products. Glasgow Math. J., 37 (1995), 1–14.

    MathSciNet  MATH  Google Scholar 

  10. Grosswald, E., Representations of integers as sums of squares. Springer-Verlag, 1985.

    Google Scholar 

  11. Hida, H., Elementary theory of L-functions and Eisenstein series. [London Math. Society Student Text, No. 26]. Cambridge Univ. Press, Cambridge, 1993.

    Google Scholar 

  12. Koblitz, N., Introduction to elliptic curves and modular forms. Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  13. Kolberg, O., Congruences for Ramanujan’s function r(n). [Arbok Univ. Bergen, Mat.-Natur. Ser. No. 1]. Univ., Bergen, 1962.

    Google Scholar 

  14. Legendre, A.,Traitée des fonctions elliptiques Vol. 3Paris, 1828.

    Google Scholar 

  15. Miyake TModular forms. Springer-Verlag, Berlin, 1989.

    Google Scholar 

  16. Ono, k., Congruences on the Fourier coefficients of modular forms on Г 0 (N). Contemp. Math, to appear.

    Google Scholar 

  17. Ono, k., Congruences on the Fourier coefficients of modular forms on Г 0 (N) with number-theoretic applications. Ph.D. Thesis, University of California, Los Angeles, 1993.

    Google Scholar 

  18. Ono, k., On the positivity of the number of t-core partitions. Acta Arithmetica 66 (1994), 221–228.

    MathSciNet  MATH  Google Scholar 

  19. Rankin, R., Ramanujan’s unpublished work on congruences. [Lect. Notes in Math., No. 601]. Springer Verlag, Berlin, 1976.

    Google Scholar 

  20. Rankin, R. A., On the representations of a number as a sum of squares and certain related identities. Proc. Cambridge Phil. Soc. 41 (1945), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  21. Robins, S., Arithmetic properties of modular forms. Ph.D. Thesis, University of California, Los Angeles, 1991.

    Google Scholar 

  22. Robins, S., Generalized Dedekind q-product. To appear in Contemp. Math.

    Google Scholar 

  23. Schoeneberg, B., Elliptic modular functions —an introduction. Springer-Verlag, Berlin, 1970.

    Google Scholar 

  24. Serre, J. P., Sur la lacunarite’ des puissances de rl. Glasgow Math. J. 27 (1985), 203–221.

    MATH  Google Scholar 

  25. Serre, J. P., Quelques applications du theorme de densite de Chebotarev. [Publ. Math. I.H.E.S., No. 54].Inst. Hautes Etudes Sci. Pub., I.H.E.S., Paris, 1981.

    Google Scholar 

  26. Serre, J. P., Congruences et formes modulaires (d’apres H.P.F. Swinnerton-Dyer). In Seminaire Bourbaki, 24e anneé (1971/1972), Exp. No. 416. [Lect. Notes in Math., No. 317]. Springer Verlag, Berlin, 1973, pp. 319–338.

    Google Scholar 

  27. Serre, J.-P. and Stark, H., Modular forms of weight z. In modular functions of one variable, Vol. VI. [Lect. Notes in Math., No. 627]. Springer Verlag, Berlin, 1971, pp. 27–67.

    Google Scholar 

  28. Shimura, G., Introduction to the arithmetic theory of automorphic functions. [Publ. Math. Soc. of Japan, No. 11], Iwanami Shoten, Tokyo, 1971.

    Google Scholar 

  29. Swinnerton-Dyer, H. P. F., On l--adic representations and congruences for coefficients of modular forms. [Lect. Notes in Math., No. 350]. Springer Verlag, Berlin, 1973.

    Google Scholar 

  30. Swinnerton-Dyer, H. P. F., On 1-adic representations and congruences for coefficients of modular forms II. [Lect. Notes in Math., No. 601]. Springer Verlag, Berlin, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Ono, K., Robins, S., Wahl, P.T. (1995). On the representation of integers as sums of triangular numbers. In: Aczél, J. (eds) Aggregating clones, colors, equations, iterates, numbers, and tiles. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9096-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9096-0_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-5243-1

  • Online ISBN: 978-3-0348-9096-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics