# On the representation of integers as sums of triangular numbers

Chapter

## Summary

In this survey article we discuss the problem of determining the number of representations of an integer as sums of triangular numbers. This study yields several interesting results. If n ≥0 is a non-negative integer, then the nth triangular number is T n = n(n + 1)/2. Let k be a positive integer. We denote by δ k (n) the number of representations of n as a sum of k triangular numbers. Here we use the theory of modular forms to calculate δ k (n). The case where k = 24 is particularly interesting. It turns out that, if n ≥3 is odd, then the number of points on the 24 dimensional Leech lattice of norm 2n is 212(212 − 1)δ 24(n − 3). Furthermore the formula for δ 24(n) involves the Ramanujan τ(n)-function. As a consequence, we get elementary congruences for τ(n). In a similar vein, when p is a prime, we demonstrate δ 24 (p k − 3) as a Dirichlet convolution of σ 11(n) and τ (n). It is also of interest to know that this study produces formulas for the number of lattice points inside k-dimensional spheres.

## Keywords

Modular Form Fourier Coefficient Fourier Expansion Eisenstein Series Cusp Form
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. [1]
Andrews, G., Eureka! num = Δ + Δ + Δ. J. Number Theory 23 (1986), 285–293.
2. [2]
3. [3]
Conway, J. and sloane, N., Sphere packings, lattices and groups. Springer-Verlag, 1988.Google Scholar
4. [4]
Deligne, P., Formes modulaires et representations 1-adiques. In Seminaire Bourbaki [Lett. Notes in Math., No. 179], Springer-Verlag, Berlin, 1971.Google Scholar
5. [5]
Deligne, P. and Serre, J.-P., Formes modulaires de poids 1. Ann. Scient. Ecole Norm. Sup. (4) 7 (1974).Google Scholar
6. [6]
Dickson, L., Theory of numbers, Vol. III. Chelsea, New York, 1952.Google Scholar
7. [7]
Garvan, F., Kim, D. and Stanton, D., Cracks and t-cores. Invent. Math. 101 (1990), 1–17.
8. [8]
Garvan, F., Some congruence properties for partitions that are p-cores. Proc. London Math. Soc. 66 (1993),449–478.
9. [9]
Gordon, B. and Robins, S., Lacunarity of Dedekind q-products. Glasgow Math. J., 37 (1995), 1–14.
10. [10]
Grosswald, E., Representations of integers as sums of squares. Springer-Verlag, 1985.Google Scholar
11. [11]
Hida, H., Elementary theory of L-functions and Eisenstein series. [London Math. Society Student Text, No. 26]. Cambridge Univ. Press, Cambridge, 1993.Google Scholar
12. [12]
Koblitz, N., Introduction to elliptic curves and modular forms. Springer-Verlag, Berlin, 1984.
13. [13]
Kolberg, O., Congruences for Ramanujan’s function r(n). [Arbok Univ. Bergen, Mat.-Natur. Ser. No. 1]. Univ., Bergen, 1962.Google Scholar
14. [14]
Legendre, A.,Traitée des fonctions elliptiques Vol. 3Paris, 1828.Google Scholar
15. [15]
Miyake TModular forms. Springer-Verlag, Berlin, 1989.Google Scholar
16. [16]
Ono, k., Congruences on the Fourier coefficients of modular forms on Г0 (N). Contemp. Math, to appear.Google Scholar
17. [17]
Ono, k., Congruences on the Fourier coefficients of modular forms on Г 0 (N) with number-theoretic applications. Ph.D. Thesis, University of California, Los Angeles, 1993.Google Scholar
18. [18]
Ono, k., On the positivity of the number of t-core partitions. Acta Arithmetica 66 (1994), 221–228.
19. [19]
Rankin, R., Ramanujan’s unpublished work on congruences. [Lect. Notes in Math., No. 601]. Springer Verlag, Berlin, 1976.Google Scholar
20. [20]
Rankin, R. A., On the representations of a number as a sum of squares and certain related identities. Proc. Cambridge Phil. Soc. 41 (1945), 1–11.
21. [21]
Robins, S., Arithmetic properties of modular forms. Ph.D. Thesis, University of California, Los Angeles, 1991.Google Scholar
22. [22]
Robins, S., Generalized Dedekind q-product. To appear in Contemp. Math.Google Scholar
23. [23]
Schoeneberg, B., Elliptic modular functions —an introduction. Springer-Verlag, Berlin, 1970.Google Scholar
24. [24]
Serre, J. P., Sur la lacunarite’ des puissances de rl. Glasgow Math. J. 27 (1985), 203–221.
25. [25]
Serre, J. P., Quelques applications du theorme de densite de Chebotarev. [Publ. Math. I.H.E.S., No. 54].Inst. Hautes Etudes Sci. Pub., I.H.E.S., Paris, 1981.Google Scholar
26. [26]
Serre, J. P., Congruences et formes modulaires (d’apres H.P.F. Swinnerton-Dyer). In Seminaire Bourbaki, 24e anneé (1971/1972), Exp. No. 416. [Lect. Notes in Math., No. 317]. Springer Verlag, Berlin, 1973, pp. 319–338.Google Scholar
27. [27]
Serre, J.-P. and Stark, H., Modular forms of weight z. In modular functions of one variable, Vol. VI. [Lect. Notes in Math., No. 627]. Springer Verlag, Berlin, 1971, pp. 27–67.Google Scholar
28. [28]
Shimura, G., Introduction to the arithmetic theory of automorphic functions. [Publ. Math. Soc. of Japan, No. 11], Iwanami Shoten, Tokyo, 1971.Google Scholar
29. [29]
Swinnerton-Dyer, H. P. F., On l--adic representations and congruences for coefficients of modular forms. [Lect. Notes in Math., No. 350]. Springer Verlag, Berlin, 1973.Google Scholar
30. [30]
Swinnerton-Dyer, H. P. F., On 1-adic representations and congruences for coefficients of modular forms II. [Lect. Notes in Math., No. 601]. Springer Verlag, Berlin, 1976.Google Scholar