Skip to main content

Summary

A rep-tiling. T is a self replicating, lattice tiling of R n. Lattice tiling means a tiling by translates of a single compact tile by the points of a lattice, and self-replicating means that there is a non-singular linear map Ø: R nR n such that, for each TT, the image Ø(T) is, in turn, tiled by T. This topic has recently come under investigation, not only because of its recreational appeal, but because of its application to the theory of wavelets and to computer addressing. The paper presents an exposition of some recent results on rep-tiling, including a construction of essentially all rep-tilings of Euclidean space. The construction is based on radix representation of points of a lattice. One particular radix representation, called the generalized balanced ternary, is singled out as an example because of its relevance to the field of computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandt, C., Self-similar sets 5. Integer matrices and fractal tilings of E“. Proc. Amer. Math. Soc. 112 (1991), 549–562.

    MathSciNet  MATH  Google Scholar 

  2. Barnsley, M., Fractals everywhere. Academic Press, Boston, 1988.

    MATH  Google Scholar 

  3. Dekking, F. M., Recurrent sets. Adv. Math. 44 (1982), 78–104.

    Article  MathSciNet  MATH  Google Scholar 

  4. Dekking, F. M., Replicating supeifigures and endomorphisms of free groups. J. Combin. Theory Ser. A 32 (1982), 315–320.

    Article  MathSciNet  MATH  Google Scholar 

  5. Gelbrich, G., Crystalloagraphic reptiles. Preprint.

    Google Scholar 

  6. Gibson L. and Lucas, D., Spatial data processing using generalized balanced ternary. In Proceedings of the IEEE Computer Society Conference on Pattern Recognition and Image Processing. IEEE Computer Society, New York, 1981, pp. 566–571.

    Google Scholar 

  7. Gilbert, W. J., Fractal geometry derived from complex bases. Math. Intelligencer 4 (1982), 78–86.

    Article  MathSciNet  MATH  Google Scholar 

  8. Gilbert, W. J., Geometry of radix representations. In The geometric vein: the Coxeter festscrift. Springer, New York—Berlin, 1981, pp. 129–139.

    Google Scholar 

  9. Gilbert, W. J., Radix representations of quadratic fields. J. Math. Anal. Appl. 83 (1981), 264–274.

    Article  MathSciNet  MATH  Google Scholar 

  10. Giles, J., Construction of replicating superfigures. J. Combin. Theory Ser. A 26 (1979), 328–334.

    Article  MathSciNet  MATH  Google Scholar 

  11. Girault-Bauquier F. and Nivat, M., Tiling the plane with one tile. In Topology and category theory in computer science (G. M. Reed, A. W. Roscoe and R. F. Wachter, eds. ), Oxford Univ.Press, 1989, pp. 291–333.

    Google Scholar 

  12. Golomb, S. W., Replicating figures in the plane. Math. Gaz. 48 (1964), 403–412.

    Article  MATH  Google Scholar 

  13. Gröchenig K. and Madych, W. R., Multiresolution analysis, Haar bases and self-similar tilings of 18“. IEEE Trans. Inform. Theory 38 (1992), 556–568.

    Article  MathSciNet  MATH  Google Scholar 

  14. Grochenig K. and Haas, A., Self-similar lattice tilings. Preprint.

    Google Scholar 

  15. Grünbaum, B. and Shephard, G. C., Tilings and patterns. W. H. Freeman and Company, New York, 1987.

    MATH  Google Scholar 

  16. Katai, I. and Szabö, J., Canonical number systems for complex integers. Acta Sci. Math. (Szeged) 37 (1975), 255–260.

    MATH  Google Scholar 

  17. Kenyon, R., Self-replicating tilings. In Symbolic dynamics and its applications (P. Walters, ed.).Contemp. Math., Vol. 135]. Birkhäuser, Boston, 1992, pp. 239–264.

    Google Scholar 

  18. Kirro, W., Vince A. and Wilson, D., An isomorphism between the p-adic integers and a ring associated with a tiling of n-space by permutohedra. Discrete Appl. Math. 52 (1994), 39–51.

    Google Scholar 

  19. Knuth, D. E., The art of computer programming, Vol. 2, Seminumerical algorithms. 2nd ed. Addison-Wesley, Reading, Mass., 1981.

    MATH  Google Scholar 

  20. Lagarias, J. C. and Wang, Y., Self-affine tiles in E8“. Preprint.

    Google Scholar 

  21. Lagarias, J. C. and Wang, Y., Integral self-affine tiles in E“: Standard and nonstandard digit sets, II. Lattice tiling. Preprint.

    Google Scholar 

  22. Lagarias, J. C. and Wang, Y., Tiling the line with one tile. Preprint.

    Google Scholar 

  23. Lawton, W. and Reesnikoff, H. L., Multidimensional wavelet bases. Preprint.

    Google Scholar 

  24. Mandelbrot, B. B., The fractal geometry of nature. Freeman, San Francisco, 1982.

    MATH  Google Scholar 

  25. Matula, D. W., Basic digit sets for radix representations. J. Assoc. Comput. Mach. 4 (1982), 1131–1143.

    MathSciNet  Google Scholar 

  26. Odlyzko, A. M., Non-negative digit sets in positional number systems. Proc. London Math. Soc. 37 (1978), 213–229.

    MathSciNet  MATH  Google Scholar 

  27. Penrose, R., Pentaplexity. Math. Intelligencer 2 (1979), 32–37.

    Article  MathSciNet  MATH  Google Scholar 

  28. Radin, C., Symmetry of tilings of the plane. Bull. Am. Math. Soc. 29 (1993), 213–217.

    Article  MathSciNet  MATH  Google Scholar 

  29. Van roessel, J. W., Conversion of Cartesian coordinates from and to generalized balanced ternary addresses. Photogrammetric Eng. Remote Sensing 54 (1988), 1565–1570.

    Google Scholar 

  30. Shechtman, D., Blech, I., Gratias, D. and Cahn, J., Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53 (1984), 1951–1954.

    Article  Google Scholar 

  31. Strichartz, R. S., Wavelets and self-affine tilings. Constructive Approx. 9 (1993), 327–346.

    Article  MathSciNet  MATH  Google Scholar 

  32. Thurston, W., Groups, tilings and finite state automata. [AMS Colloquium Lecture Notes].Amer. Math. Soc., Providence, RI, 1989.

    Google Scholar 

  33. Venkov, B. A., On a class of Euclidean polyhedra. Vestnik Leningrad. Univ. Mat. Fiz. Khim. 9 (1954), 11–31 (Russian).

    Article  Google Scholar 

  34. Vince, A., Replicating tessellations. SIAM J. Discrete Math. 6 (1993), 501–521.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Vince, A. (1995). Rep-tiling Euclidean space. In: Aczél, J. (eds) Aggregating clones, colors, equations, iterates, numbers, and tiles. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9096-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9096-0_10

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-5243-1

  • Online ISBN: 978-3-0348-9096-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics