Advertisement

Projection Functions on Higher Rank Grassmannians

  • Paul Goodey
  • Rolf Schneider
  • Wolfgang Weil
Part of the Operator Theory Advances and Applications book series (OT, volume 77)

Abstract

This work comprises a study of the behaviour of projection functions of convex bodies considered as functions defined on Grassmannian manifolds. We show that the behaviour in the case of higher rank manifolds is often very different from the rank 1 case. We also study the images of projection functions under Radon transforms. If X is an n-dimensional normed space, and d denotes the Banach-Mazur distance, then d(X, n ) ≤ cn 5/6.

Keywords

Convex Body Projection Function Surface Area Measure Integral Geometry Invariant Probability Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.D. Aleksandrov, 1937a, On the theory of mixed volumes of convex bodies, I, Extension of certain concepts in the theory of convex bodies (Russian), Mat. Sbornik N. S. 2 (1937), 947–972.Google Scholar
  2. A.D. Aleksandrov, 1937b, On the theory of mixed volumes of convex bodies, II, New inequalities between mixed volumes and their applications (Russian), Mat. Sbornik N. S. 2 (1937), 1205–1238.zbMATHGoogle Scholar
  3. T. Bonnesen and W. Fenchel, 1934, Theorie der konvexen Körper, Springer, Berlin 1934.zbMATHGoogle Scholar
  4. H. Busemann and G.C. Shephard, 1967, Convexity on nonconvex sets, In: Proc. Coll. Convexity (Copenhagen 1965), Københavns Univ. Mat. Inst. 1967, pp. 20–33.Google Scholar
  5. G.D. Chakerian and E. Lutwak, 1994, Bodies with similar projections, (preprint).Google Scholar
  6. S.S. Chern, 1966, On the kinematic formula in integral geometry, J. Math. Mech. 16 (1966), 101–118.MathSciNetzbMATHGoogle Scholar
  7. W. Fenchel and B. Jessen, 1938, Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat.-fys. Medd. 16, 3 (1938).Google Scholar
  8. W.J. Firey, 1970a, Local behaviour of area functions of convex bodies, Pacific J. Math. 35 (1970), 345–357.MathSciNetzbMATHGoogle Scholar
  9. W.J. Firey, 1970b, Convex bodies of constant outer p-measure, Mathematika 17 (1970), 21–27.MathSciNetzbMATHCrossRefGoogle Scholar
  10. R.J. Gardner and A. Volčič, 1994, Determination of convex bodies by their brightness functions, (to appear in Mathematika).Google Scholar
  11. I.M. Gelfand, M.I. Graev and R. Roşu, 1984, The problem of integral geometry and intertwining operators for a pair of real Grassmannian manifolds, J. Operator Theory 12 (1984), 359–383.MathSciNetGoogle Scholar
  12. P. Goodey and R. Howard, 1990, Processes of flats induced by higher dimensional processes, Adv. in Math. 80 (1990), 92–109.MathSciNetzbMATHCrossRefGoogle Scholar
  13. P. Goodey and R. Schneider, 1980, On the intermediate area functions of convex bodies, Math. Z. 173 (1980), 185–194.MathSciNetzbMATHCrossRefGoogle Scholar
  14. P. Goodey and W. Weil, 1987, Translative integral formulae for convex bodies, Aequationes Math. 34 (1987), 64–77.MathSciNetzbMATHCrossRefGoogle Scholar
  15. P. Goodey and W. Weil, 1991, Centrally symmetric convex bodies and Radon transforms on higher order Grassmannians, Mathematika 38 (1991), 117–133.MathSciNetzbMATHCrossRefGoogle Scholar
  16. P. Goodey and W. Weil, 1992, Integral geometric formulae for projection functions, Geom. Dedicata 41 (1992), 117–126.MathSciNetzbMATHCrossRefGoogle Scholar
  17. P. Goodey and W. Weil, 1993, Zonoids and generalisations, In: Handbook of Convex Geometry, eds: P. Gruber and J. M. Wills, Elsevier, Amsterdam 1993, pp. 1297–1326.Google Scholar
  18. E. Grinberg, 1986, Radon transforms on higher rank Grassmannians, J. Differential Geometry 24 (1986), 53–68.MathSciNetzbMATHGoogle Scholar
  19. H. Groemer, 1977, On translative integral geometry, Arch. Math. 29 (1977), 324–330.MathSciNetzbMATHCrossRefGoogle Scholar
  20. H. Hadwiger, 1957, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin 1957.zbMATHGoogle Scholar
  21. S. Helgason, 1980, The Radon Transform, Birkhäuser, Boston 1980.zbMATHGoogle Scholar
  22. S. Helgason, 1984, Groups and Geometric Analysis, Academic Press, Orlando 1984.zbMATHGoogle Scholar
  23. K. Leichtweiss, 1980, Konvexe Mengen, Springer, Berlin, 1980.Google Scholar
  24. H. Martini, 1984, Zur Bestimmung konvexer Polytope durch die Inhalte ihrer Projektionen, Beitr. Algebra. Geom. 18 (1984), 75–85.MathSciNetzbMATHGoogle Scholar
  25. H. Martini, 1987, Some results and problems around zonotopes, In: Coll. Math. Soc. J. Bolyai 48, Intuitive Geometry, North-Holland 1987, pp. 383–417.Google Scholar
  26. H. Minkowski, 1904, Über die Körper konstanter Breite, (Russian), Mat. Sbornik 25 (1904), 447–495. German translation: Gesammelte Abhandlungen, vol. II, B. G. Teubner, Leipzig, 1911, pp. 277–279.Google Scholar
  27. C.M. Petty, 1967, Projection bodies, In: Proc. Coll. Convexity (Copenhagen 1965), Københavns Univ. Mat. Inst. 1967, pp. 234–241.Google Scholar
  28. L. Santaló, 1976, Integral Geometry and Geometric Probability, Addison-Wesley, Reading, Mass, 1976.zbMATHGoogle Scholar
  29. R. Schneider, 1967, Zu einem Problem von Shephard iiber die Projektionen konvexer Körper, Math. Z. 101 (1967), 71–82.MathSciNetzbMATHCrossRefGoogle Scholar
  30. R. Schneider, 1993a, Convex bodies: the Brunn-Minkowski theory. (Encyclopaedia of Mathematics and Its Applications, vol. 44), Cambridge University Press, Cambridge 1993.zbMATHGoogle Scholar
  31. R. Schneider, 1993b, Convex surfaces, curvature and surface area measures, In: Handbook of Convex Geometry, eds: P. M. Gruber and J. M. Wills, Elsevier, Amsterdam 1993, pp. 273–299.Google Scholar
  32. R. Schneider and W. Weil, 1983, Zonoids and related topics, In: Convexity and Its Applications, eds: P.M. Gruber and J.M. Wills, Birkhäuser, Basel 1983, pp. 296–317.Google Scholar
  33. R. Schneider and W. Weil, 1986, Translative and kinematic integral formulae for curvature measures. Math. Nachr. 129 (1986), 67–80.MathSciNetzbMATHCrossRefGoogle Scholar
  34. R. Schneider and W. Weil, 1992, Integralgeometrie, Teubner, Stuttgart 1992.zbMATHGoogle Scholar
  35. R. Schneider and J.A. Wieacker, 1993, Integral Geometry, In: Handbook of Convex Geometry, eds: P.M. Gruber and J.M. Wills, Elsevier, Amsterdam 1993, pp. 1349–1390.Google Scholar
  36. G.C. Shephard, 1963, Decomposable convex polyhedra, Mathematika 10 (1963), 89–95.MathSciNetzbMATHCrossRefGoogle Scholar
  37. D.M.Y. Sommerville, 1958, An introduction to the geometry of n dimensions. Dover, New York 1958.zbMATHGoogle Scholar
  38. W. Weil, 1979, Centrally symmetric convex bodies and distributions II, Israel J. Math. 32 (1979), 173–182.MathSciNetzbMATHCrossRefGoogle Scholar
  39. W. Weil, 1990, Iterations of translative integral formulae and nonisotropic Poisson processes of particles, Math. Z. 205 (1990), 531–549.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1995

Authors and Affiliations

  • Paul Goodey
    • 1
  • Rolf Schneider
    • 2
  • Wolfgang Weil
    • 3
  1. 1.Department of MathematicsUniversity of OklahomaNormanUSA
  2. 2.Mathematisches Institut derAlbert-Ludwigs-UniversitätFreiburg i. Br.Germany
  3. 3.Mathematisches Institut IIUniversität KarlsruheKarlsruheGermany

Personalised recommendations