Remarks on Bourgain’s Problem on Slicing of Convex Bodies

  • Sean Dar
Part of the Operator Theory Advances and Applications book series (OT, volume 77)


For a convex symmetric body K ⊂ ℝ n we define a number L K by:
$$ nL_K^2{\left| K \right|^{2/n}} = \mathop {\min }\limits_{T \in SL(n)} \frac{1} {{\left| K \right|}} \cdot \int\limits_K {{{\left| {Tx} \right|}^2}dx\;(where\,\left| K \right| = volume\,of\,K)} $$
If the minimum is attained for T = id we say that K is in isotropic position. Any K has an affine image which is in isotropic position.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ball86]
    Ball, K. (1986) Isometric problems in p and sections of convex sets, Ph.D. Dissertation, Trinity College, Cambridge.Google Scholar
  2. [B91]
    Bourgain, J. (1991) On the distribution of polynomials on high dimensional convex sets, in: Lecture Notes in Mathematics, Vol. 1469 (Springer, Berlin) pp. 127–137.Google Scholar
  3. [FLM77]
    Figiel, T., J. Lindenstrauss & V. Milman (1977) The dimension of almost spherical sections of convex bodies. Acta Math. 139, 53–94.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [F-T79]
    Figiel, T. & N. Tomczak-Jaegermann (1979) Projections onto Hilbertion subspaces of Banach spaces. Israel J. Math 33, 155–171.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [G-M84]
    Gromov, M. & V.D. Milman (1984) Brunn theorem and a concentration of volume phenomenon for symmetric convex bodies, G AFA Seminar Notes, Tel Aviv. University.Google Scholar
  6. [J91]
    Junge, M. (1991) Hyperplane conjecture for subspaces of p. Preprint.Google Scholar
  7. [J95]
    Junge, M. (1995) Proportional subspaces of spaces with unconditional basis have good volume properties (this volume).Google Scholar
  8. [L79]
    Lewis, D.R. (1979) Ellipsoids defined by Banach ideal norms, Mathematica 26, 18–29.zbMATHGoogle Scholar
  9. [M-P81]
    Marcus, M. & G. Pisier (1981) Random Fourier series with applications to harmonic analysis. Ann. of Math. Studies, Vol. 10 (Princeton Univ. Press, Princeton, NJ).zbMATHGoogle Scholar
  10. [M88]
    Milman, V.D. (1988) Isomorphic symmetrization and geometric inequalities, in: Lecture Notes in Mathematics, Vol. 1317 (Springer, Berlin) pp. 107–131.Google Scholar
  11. [M-P89]
    Milman, V.D. & Pajor, A. (1989) Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, in: Lecture Notes in Mathematics, Vol. 1376 (Springer, Berlin) pp. 69–109.Google Scholar
  12. [M-Sch86]
    Milman, V.D. & Schechtman, G. (1986) Asymptotic theory of finite dimensional normed spaces (Springer, Berlin).zbMATHGoogle Scholar
  13. [P80]
    Pisier, G. (1980) Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert. Am. Sci. École Norm. Sup. 13, 23–43.MathSciNetzbMATHGoogle Scholar
  14. [P89]
    Pisier, G. (1989) The Volume of Convex Bodies and Banach Space Geometry (Cambridge University Press).zbMATHCrossRefGoogle Scholar
  15. [S71]
    Sudakov, V.N. (1971) Gaussian random processes and measures of solid angles in Hilbert spaces, Soviet Math. Dokl. 12, 412–419.MathSciNetzbMATHGoogle Scholar
  16. [T-J89]
    Tomczak-Jaegermann, N. (1989) Banach-Mazur Distance and Finitedimensional Operator Ideal, Pitmono Monographs, Vol. 38 (Pitman, London).Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1995

Authors and Affiliations

  • Sean Dar
    • 1
  1. 1.School of Mathematical Sciences Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations