Skip to main content

A Concentration of Measure Phenomenon on Uniformly Convex Bodies

  • Conference paper
Geometric Aspects of Functional Analysis

Part of the book series: Operator Theory Advances and Applications ((OT,volume 77))

Abstract

In his paper [M] B. Maurey gave a very simple proof of the gaussian deviation inequality, based on an inequality of A. Prekopa [Pr] and L. Leindler [L]. Motivated by Talagrand’s isoperimetric inequality for the cube (cf. [T.3]) Maurey defined a property which he called property (τ). He proved that in the gaussian case this property is a consequence of the Prekopa-Leindler inequality. This method can be easily extended to give a concentration of measure phenomenon for a particular measure associated with uniformly convex spaces whose modulus of convexity satisfies a certain condition. In [Pi] G. Pisier proved that this condition can be guaranteed after renorming. Prom this we deduce the concentration of measure result of M. Gromov and V.D. Milman (cf. [G.M.2]) for uniformly convex bodies, whose modulus of convexity satisfies the condition mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ball, unpublished.

    Google Scholar 

  2. M.M. Day. Some characterizations of inner product spaces, Trans. Amer. Math. Soc. 62 (1947), 320–337.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Gromov and V.D. Milman. Brunn’s theorem and a concentration of measure phenomenon for convex symmetric bodies, GAFA 1983/84.

    Google Scholar 

  4. M. Gromov and V.D. Milman. Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces, Comp. Math. 62 (1987), 263–282.

    MathSciNet  MATH  Google Scholar 

  5. M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, 1991.

    MATH  Google Scholar 

  6. L. Leindler. On a certain converse of Hölder’s inequality II, Acta Sci. Math. 33 (1972), 217–223.

    MathSciNet  MATH  Google Scholar 

  7. J. Lindenstrauss and L. Tzafriri. Classical Banach Spaces II. Springer

    Google Scholar 

  8. M. Meyer and A. Pajor. Sections of the unit ball of n p . Journal of Funct. Anal. 80 (1988), 109–123.

    Article  MathSciNet  MATH  Google Scholar 

  9. V.D. Milman and A. Pajor. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n dimensional space. GAFA 87/88, SLNM 1376, 64–104.

    Google Scholar 

  10. M. Meyer and S. Reisner. A geometric property of the boundary of symmetric convex bodies and convexity of notation surfaces, Geom. Ded. 37 (1991), 327–337.

    MathSciNet  MATH  Google Scholar 

  11. B. Maurey. Some deviation inequalities, GAFA 1.2 (1991), 188–197.

    Google Scholar 

  12. A. Pajor. Notes

    Google Scholar 

  13. G. Pisier. Martingales with values in uniformly convex spaces, Israel. J. Math. 20, 3–4 (1975),

    Article  MathSciNet  Google Scholar 

  14. G. Pisier. Martingales with values in uniformly convex spaces, Israel. J. Math. 20, 326–350 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Prekopa. On logarithmically concave measures and functions, Acta Sci. Math 34 (1973) 335–343.

    MathSciNet  MATH  Google Scholar 

  16. C. Schütt and E. Werner. The convex floating body, Math. Scand. 66 (1990), 275–290.

    MathSciNet  MATH  Google Scholar 

  17. G. Schechtman and J. Zinn. On the volume of the intersection of two L n p balls, Proc. Amer. Math. Soc. 110 (1990), 217–224.

    MathSciNet  MATH  Google Scholar 

  18. M. Talagrand, A new isoperimetric inequality and the concentration of measure phenomenon, GAFA 1469 (1991), 94–124.

    MathSciNet  Google Scholar 

  19. M. Talagrand. The supremum of some canonical processes, Manuscript.

    Google Scholar 

  20. M. Talagrand. An Isoperimetric Theorem on the Cube and the Khintchine-Kahane Inequalities, Proc. Amer. Math. Soc. 104 (1988), 905–909.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Lindenstrauss V. Milman

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Schmuckenschläger, M. (1995). A Concentration of Measure Phenomenon on Uniformly Convex Bodies. In: Lindenstrauss, J., Milman, V. (eds) Geometric Aspects of Functional Analysis. Operator Theory Advances and Applications, vol 77. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9090-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9090-8_23

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9902-4

  • Online ISBN: 978-3-0348-9090-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics